Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác APMO có
^PAO + ^PMO = \(90^0\)+\(90^0\)=1800
mà ^PAO và ^PMO là 2 góc đối nhau
=> tứ giác APMO nội tiếp (đccm)
b, Có PA=PM (t/c 2 tiếp tuyến cắt nhau)
OA=OM (bán kính (O))
=> PO là đ.t.trực của AM => PO⊥AM (1)
Có ^AMB là góc nt chắn nửa (O) => ^AMB = \(90^0\) hay AM⊥MB (2)
Từ (1),(2) => PO//BM
c, Xét ΔPAO và ΔNOB có
^PAO= ^NOB=\(90^0\) (Ax là tt, ON⊥AB)
^POA= ^NBO ( PO//BM)
OA =OB
=> ΔPAO= ΔNOB (gcg)
=>PO=BN
mà PO//BN ( câu b)
=>POBN là hbh
d, Có POBN là hbh =>PN//OB
mà ON⊥OB
=> ON⊥PN (từ ⊥ đến //)
Xét ΔPJO có PM⊥OJ (PM là tt)
ON⊥CJ (cmt)
PM\(\cap\)ON =\(\left\{I\right\}\)
=> I là trực tâm △PJO
=>JI⊥PO
các bạn c/m IK⊥PO là ra nhé
có cái mị k ngoặc đc ( *thông cảm a*)
a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.
Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:
\(BC.BM=AB^2=4R^2\)
b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA
Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)
\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)
Hay IC là tiếp tuyến tại C của nửa đường tròn.
c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:
\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)
Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.
Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\) (1)
Xét tam giác vuông MAB, theo Pi-ta-go ta có:
\(MB^2=MA^2+AB^2=MA^2+4R^2\) (2)
Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)
d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)
Tương tự \(\widehat{CEO}=90^o\)
Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.
Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.
Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.
Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.
Vậy đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.
Câu cuối là gì nhờ
A A A B B B M M M C C C D D D O O O H H H K K K E E E F F F I I I a/Vì C là giao điểm 2 tiếp tuyến (O) nên ta có AC=MC,^OCM=1/2 ^ACD
Tương tự thì BD=DM, ^ODC=1/2 ^BDC.Từ đó suy ra AC+BD=CM+DM=CD và ^COD=90
b/Từ kết quả ở câu a thì ta chỉ cần chứng minh CM.DM=R2=OM2
Ta dễ dàng chứng minh được đẳng thức trên vì ta có \(\Delta OCM~\Delta DOM\left(g.g\right)\)
c/Ta có OC là đường trung trực của AM nên suy ra AM vuông góc OC tại H,H là trung điểm AM
Lại có BM vuông góc với OD tại K,K là trung điểm BM và ^COD=90(cmt)
Suy ra OHMK là hcn
d/Từ câu c suy ra ngay OC//BM, mà O là trung điểm AB nên OC là đtb của tam giác ABE
Suy ra C là trung điểm AE
e/MF cắt HK thì phải
Ta có tam giác AMF có HI//AF,H là trung điểm AM suy ra I là trung điểm MF
f/Gọi T là trung điểm CD, ta dễ thấy (COD) là (T,TO)
Mà ta có TO vuông góc với AB(tính chất đường tb hình thang)
g/ ghi đề dùm
A B O C D E M H K
a)Ta có: EA \(\perp\)AB (t/c tiếp tuyến) => \(\widehat{OAE}=90^0\)
OD \(\perp\)EC (t/c tiếp tuyến) => \(\widehat{ODE}=90^0\)
Xét t/giác AODE có \(\widehat{OAE}+\widehat{ODE}=90^0+90^0=180^0\)
=> t/giác AODE nt đường tròn (vì tổng 2 góc đối diện = 1800)
b) Xét \(\Delta\)EKD và \(\Delta\)EDB
có: \(\widehat{BED}\):chung
\(\widehat{EDK}=\widehat{EBK}=\frac{1}{2}sđ\widebat{KD}\)
=> \(\Delta\)EKD ∽ \(\Delta\)EDB (g.g)
=> \(\frac{ED}{EB}=\frac{EK}{ED}\)=> ED2 = EK.EB (1)
Ta có: AE = ED (t/c 2 tt cắt nhau) => E thuộc đường trung trực của AD
OA = OD = R => O thuộc đường trung trực của AD
=> EO là đường trung trực của ED => OE \(\perp\)AD
Xét \(\Delta\)EDO vuông tại D có DH là đường cao => ED2 = EK.EB (2)
Từ (1) và (2) => EH.EO = DK.EB => \(\frac{EH}{EB}=\frac{EK}{EO}\)
Xét tam giác EHK và tam giác EBO
có: \(\widehat{OEB}\): chung
\(\frac{EH}{EB}=\frac{EK}{EO}\)(cmt)
=> tam giác EHK ∽ tam giác EBO (c.g.c)
=> \(\widehat{EHK}=\widehat{KBA}\)
c) Ta có: OM // AE (cùng vuông góc với AB) => \(\frac{OM}{AE}=\frac{MC}{EC}\)(hq định lí ta-lét)
=> OM.EC = AE.MC
Ta lại có: \(\frac{EA}{EM}-\frac{MO}{MC}=\frac{EA.MC-MO.EM}{EM.MC}=\frac{MO.EC-MO.EM}{EM.MC}=\frac{OM.MC}{EM.MC}=\frac{OM}{EM}\)
Mặt khác: OM // AE => \(\widehat{MOE}=\widehat{OEA}\)(slt)
mà \(\widehat{AEO}=\widehat{OEM}\)(t/c 2 tt cắt nhau)
=> \(\widehat{MOE}=\widehat{MEO}\) => tam giác OME cân tại M => OM = ME
=> \(\frac{OM}{EM}=1\)
=> \(\frac{EA}{EM}-\frac{OM}{MC}=1\)
a, HS tự làm
b, Ta có OP ⊥ AM, BM ⊥ AM => BM//OP
c, chứng minh ∆AOP = ∆OBN => OP=BN
lại có BN//OP do đó OPNB là hình bình hành
d, Ta có ON ⊥ PI, PM ⊥ JO mà PM ∩ ON = I => I là trực tâm ∆POJ => JI ⊥ PO(1)
Chứng minh PAON hình chữ nhật => K trung điểm PO
Lại có A P O ^ = O P I ^ = I O P ^ => ∆IPO cân tại I => IKPO (2)
Từ (1),(2) => J,I,K thẳng hàng
Vì sao A P O ^ = O P I ^ = I O P ^ v bn???