Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a/ Chứng minh: OA vuông góc MN.
Áp dụng tính chất 2 tiếp tuyến cắt nhau ta có AM=AN⇒AAM=AN⇒A thuộc trung trực của MN.
Lại có OM=ON=R⇒OOM=ON=R⇒O thuộc trung trực của MN
⇒OA⇒OA là trung trực của MN.
⇒OA⊥MN⇒OA⊥MN (1).
b/ Vẽ đường kính NOC. Chứng minh rằng: MC//AO.
Xét tam giác MNC có: MO=OC=ON=R⇒MC=12NCMO=OC=ON=R⇒MC=12NC
⇒ΔMNC⇒ΔMNC vuông tại M (Định lí đường trung tuyến)
⇒MN⊥MC⇒MN⊥MC (2).
Từ (1) và (2) => MC // AO.
c/ Tính độ dài các cạnh của tam giác AMN biết OM = 3 cm, OA = 5 cm.
Áp dụng định lí Pytago trong tam giác vuông OAM có:
AM2=OA2−OM2AM2=52−32=16AM=4(cm)=ANAM2=OA2−OM2AM2=52−32=16AM=4(cm)=AN
Gọi H là giao điểm của MN và OA.
⇒MN⊥AO⇒MN⊥AO tại H.
Áp dụng hệ thức lượng trong tam giác vuông OAM, đường cao MH có:
OM2=OH.OA⇒32=OH.5⇒OH=95(cm)⇒AH=OA−OH=165OM2=OH.OA⇒32=OH.5⇒OH=95(cm)⇒AH=OA−OH=165
⇒MH2=OH.AH=95.165⇒MH=125(cm)⇒MH2=OH.AH=95.165⇒MH=125(cm)
OA là trung trực của MN (cmt) ⇒H⇒H là trung điểm của MN
⇒MN=2MH=245(cm)⇒MN=2MH=245(cm).
a) Tam giác MAN cân tại A có OA là tia phân giác nên nó cũng trùng với đường cao. Vì vậy OA⊥MN.
b) Do AM, AN là hai tiếp tuyến cùng xuất phát từ một điểm nằm ngoài đường tròn nên AO là phân giác góc ^MAN và I là điểm chính giữa của cung MN. Từ đó ta có:
.
⇒ IM là phân giác góc ^NMA.
⇒ I là tâm đường tròn nội tiếp tam giác MNA.
c) Nếu tứ giác OMIN là hình thoi thì OM=ON=MI=IN=R.
Suy ra các tam giác OMI, ONI là tam giác đều. Vì vậy ^MON=^MOA+^AON=60o+60o=120o.
Suy ra ^MAN=180o−^MON=60o.
Ngược lại giả sử ^MAN=60o. Suy ra ^MON=180o−^MAN=120o.
Có OA là tia phân giác của góc MON nên ^MOA=^AON=120o:2=60o.
Suy ra các tam giác MOA, AON là tam giác đều hay tứ giác OMIN là hình thoi.
Vậy ^MAN=60o thì tứ giác OMIN là hình thoi.
Xin chào các bạn !!!
Hãy Đăng Kí Cho Channel Kaito1412_TV Để nhé !
Link là : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó:AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra OA\(\perp\)BC(3)
b: Xét (O) có
ΔDBC nội tiếp
DC là đường kính
Do đó: ΔDBC vuông tại B
=>BC\(\perp\)BD(4)
Từ (3) và (4) suy ra BD//OA