K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2021

A F N M O C B E

a) Xét tam giác AMB có :

MO = OA = OB ( =bk )

\(\Rightarrow MO=\frac{1}{2}AB\)

=> Tam giác AHB vuông tại M

=> EM là đường cao của tam giác ANE

- Xét tam giác ACB có : OC = OB = OA ( =bk )

\(\Rightarrow OC=\frac{1}{2}AB\Rightarrow\Delta ACB\)vuông tại C

=> NC là đường cao của tam giác ANE

=> B là giao điểm 3 đường cao của tam giác ANE

=> AB là đường cao của tam giác ANE

Vậy : \(NE\perp AB\left(đpcm\right)\)

b) Xét 2tam giác : MAF và MNE

                       Có : MA = MN (gt) 

                              MF = ME ( gt )

                              ^AMF = ^NME ( đối đỉnh )

do đó : \(\Delta MAF=\Delta NME\left(c-g-c\right)\)

=> ^AFM = ^NEM

Mà 2 góc ^AFM và ^NEM có vị trí so le 

=> AF // NE

Mà : \(NE\perp AB\)( c/m câu a ) => \(AF\perp AB\)tại A

Vậy : FA là tiếp tuyến đường tròn (O) ( đpcm )

c) Ta có : ^AMB = 90^o => \(FB\perp AN\)

                      MA = MB

=> FB là đường trung trực của AN

=> BN = BA ; FN = FA

- Xét 2 tam giác : ABF và NBF có : BN = BA ; FN = FA

FB chung

\(\Rightarrow\Delta ABF=\Delta NBF\left(c-c-c\right)\)

=> ^BNF = ^BAF = 90^o

\(\Rightarrow BN\perp FN\)tại B mà BN = BA

Vậy : FN là tiếp tuyến của đường tròn ( B ; BA ) ( đpcm )

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

1: Xét ΔOAB vuông tại B có 

\(\sin\widehat{OAB}=\dfrac{OB}{OA}=\dfrac{1}{2}\)

\(\Leftrightarrow\widehat{OAB}=30^0\)

\(\Leftrightarrow\widehat{BOA}=60^0\)

2: Ta có: C và B đối xứng nhau qua OA

nên OA là đường trung trực của BC

Suy ra: OB=OC và AB=AC

hay OC=R

Suy ra: C nằm trên (O)

Xét ΔOBA và ΔOCA có 

OA chung

OB=OC

AB=AC

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}\)

mà \(\widehat{OBA}=90^0\)

nên \(\widehat{OCA}=90^0\)

\(\Leftrightarrow AC\perp OC\) tại C

hay AC là tiếp tuyến của (O)

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xet ΔNAB có

AC.BM là các đường cao

AC cắt BM tại E

Do đó: E là trực tâm

=>NE vuông góc với AB

b: Xét tứ giác NEAF có

M là trung điểm chung của NA và EF

nên NEAF là hình bình hành

=>NE//AF

=>AF vuông góc với AB

=>FA là tiêp tuyến của (O)

a: Xét ΔBAO vuông tại A có \(cosAOB=\dfrac{OA}{OB}=\dfrac{1}{\sqrt{2}}\)

=>\(\widehat{AOC}=45^0\)

=>\(sđ\left(OA;OC\right)=45^0\)

b: Số đo cung AC nhỏ là:

\(sđ\stackrel\frown{AC}=45^0\)

Số đo cung AC lớn là:

3600-450=3150

29 tháng 12 2016

Bạn tự vẽ hình nha ;)

a) Xét đg tròn (O), đg kính AB có:

\(\left\{\begin{matrix}C\in\left(O\right)\\M\in\left(O\right)\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\Delta ABC\\\Delta ABM\end{matrix}\right.vuông \Rightarrow\left\{\begin{matrix}AC\perp BN\\BM\perp AN\end{matrix}\right.\)

Xét \(\Delta ABN\) có: \(\left\{\begin{matrix}AC\perp BN\\BM\perp AN\end{matrix}\right.\)(c/m trên)

Mà AC và BN cắt nhau tại E

=> \(NE\perp AB\)

b) Gọi giao điểm của NE và AB là I => \(NI\perp AB\)

Xét tứ giác AENF có: AN cắt EF tại M

Mà M là trung điểm của AN( A đx với N qua M)

M là trung điểm của EF(E đx với F qua M)

=> AENF là hình bình hành( Tứ giác có 2 đ/c cắt nhau tại trung điểm của mỗi đg là hình bình hành) => AF // EN => \(\widehat{NAF}=\widehat{ANI}\) (1) ( 2 góc so le trong)

Xét \(\Delta ANI\) vuông tại I( NI\(\perp AB\)) có: \(\widehat{ANI}+\widehat{NAI}=90^o\) (2) ( 2 góc nhọn phụ nhau)

Từ (1) và (2) => \(\widehat{NAF}+\widehat{NAI}=90^o\) => \(\widehat{OAF}=90^o\) => OA\(\perp\)FAtại A

Xét đg tròn(O; OA) có: \(OA\perp FA\) tại A(c/m trên)

=> FA là tiếp tuyến của đg tròn (O)

c) Xét \(\Delta ABN\) có:

BM là trung tuyến ứng vs AN( M là trung điểm của AN)

đồng thời BM là đg cao ứng vs AN

=> \(\Delta ABN\) cân tại B( Nếu một tam giác có đg trung tuyến ứng vs một cạnh, đồng thời là đg cao ứng vs cạnh đó thì tam giác đó là tam giác cân)

=> BA=BN và BM là phân giác của góc B

=> BN là bán kính của (B)

Xét \(\Delta ABFvà\Delta NBFcó:\)

BA=BN( c/m trên)

\(\widehat{ABF}=\widehat{NBF}\)(BM là phân giác của \(\widehat{B}\))

BF là cạnh chung

=> \(\Delta ABF=\Delta NBF\left(c.g.c\right)\)

=> \(\widehat{A}=\widehat{N}\)( 2 góc tương ứng). Mà \(\widehat{A}=90^o\)

=> \(\widehat{N}=90^o\) => \(BN\perp NF\) tại N

Xét đg tròn (B;BN) có: BN\(\perp\)NF tại N( c/m trên)

=> NF là tiếp tuyến của đg tròn (B;BA)

d) Xét \(\Delta NBF\) vuông tại N(\(\widehat{N}=90^o\)) có:

\(NB^2=BM.BF\) (3)(Hệ thức lượng trong tam giác vuông)

Mặt khác \(NB^2+NF^2=BF^2\)(Định lý Pytago)

=> \(NB^2=BF^2-NF^2\) (4)

Từ (3) và (4) => \(BM.BF=BF^2-NF^2\)(cùng =\(NB^2\))