Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu cuối là gì nhờ
A A A B B B M M M C C C D D D O O O H H H K K K E E E F F F I I I a/Vì C là giao điểm 2 tiếp tuyến (O) nên ta có AC=MC,^OCM=1/2 ^ACD
Tương tự thì BD=DM, ^ODC=1/2 ^BDC.Từ đó suy ra AC+BD=CM+DM=CD và ^COD=90
b/Từ kết quả ở câu a thì ta chỉ cần chứng minh CM.DM=R2=OM2
Ta dễ dàng chứng minh được đẳng thức trên vì ta có \(\Delta OCM~\Delta DOM\left(g.g\right)\)
c/Ta có OC là đường trung trực của AM nên suy ra AM vuông góc OC tại H,H là trung điểm AM
Lại có BM vuông góc với OD tại K,K là trung điểm BM và ^COD=90(cmt)
Suy ra OHMK là hcn
d/Từ câu c suy ra ngay OC//BM, mà O là trung điểm AB nên OC là đtb của tam giác ABE
Suy ra C là trung điểm AE
e/MF cắt HK thì phải
Ta có tam giác AMF có HI//AF,H là trung điểm AM suy ra I là trung điểm MF
f/Gọi T là trung điểm CD, ta dễ thấy (COD) là (T,TO)
Mà ta có TO vuông góc với AB(tính chất đường tb hình thang)
g/ ghi đề dùm
Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [O, C] Đoạn thẳng p: Đoạn thẳng [F, C] Đoạn thẳng q: Đoạn thẳng [C, H] Đoạn thẳng r: Đoạn thẳng [B, E] Đoạn thẳng s: Đoạn thẳng [C, E] Đoạn thẳng t: Đoạn thẳng [A, F] O = (1.42, 2.28) O = (1.42, 2.28) O = (1.42, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l
a) Ta thấy \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn AB. Vậy nên \(\widehat{ACB}=\frac{sđ\widebat{AB}}{2}=\frac{180^o}{2}=90^o\)
Vậy tam giác ABC là tam giác vuông tại C.
b) Do M là trung điểm của dây cung AC. Theo tính chất đường kính, dây cung, ta có \(OM\perp AC\)
Xét tứ giác OMCH có \(\widehat{OMC}=\widehat{OHC}=90^o\) nên OMCH là tứ giác nội tiếp.
Đường tròn ngoại tiếp tứ giác trên có đường kinh là OC nên tâm I của đường tròn là trung điểm OC.
c) Xét tam giác vuông ABE có đường cao BC. Áp dụng hệ thức lượng trong tam giác ta có:
\(EC.EA=BE^2\)
Xét tam giác vuông BCE, theo định lý Pi-ta-go, ta có:
\(BE^2=OE^2-OB^2=OE^2-R^2\)
Vậy ta có ngay \(EC.EA=OE^2-R^2\)
d) Ta thấy CH // BE nên áp dụng định lý Talet ta có:
\(\frac{NH}{BF}=\frac{NC}{FE}\left(=\frac{AH}{AB}\right)\)
Lại có NH = HC nên BF = FE
Xét tam giác vuông BCE có CF là trung tuyến ứng vớ cạnh huyền nên FC = FB.
Vậy thì \(\Delta OCF=\Delta OBF\left(c-c-c\right)\Rightarrow\widehat{OCF}=\widehat{OBF}=90^o\)
hay CF là tiếp tuyến của đường tròn (I)
a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.
Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:
\(BC.BM=AB^2=4R^2\)
b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA
Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)
\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)
Hay IC là tiếp tuyến tại C của nửa đường tròn.
c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:
\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)
Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.
Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\) (1)
Xét tam giác vuông MAB, theo Pi-ta-go ta có:
\(MB^2=MA^2+AB^2=MA^2+4R^2\) (2)
Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)
d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)
Tương tự \(\widehat{CEO}=90^o\)
Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.
Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.
Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.
Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.
Vậy đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.
O A B C E I D F
a) xét tứ giác ABOC, ta có:
\(\widehat{OBA}=90^O\)
\(\widehat{OCA}=90^O\)
=> \(\widehat{OBA}+\widehat{OCA}=180^O
\)
=> tứ giác ABOC nội tiếp
b) Xét tam giác OBC, ta có:
OB = OC = R
=> tam giác OBC cân tại O
=> OE vừa là đường cao vừa là đường phân giác dường phân giác góc O.
=> BE = CE
=> OA vuông góc BC ( đường kính đi qua trung điểm của dây cung thì vuông góc với dây đó)
Xét tam giác AOB và tam giác ABE, ta có:
góc A chung
góc OBA = BEA = 90o
=>AOB đồng dạng ABE
=> \(\frac{AB}{AE}=\frac{OB}{BE}\)
=>AB.BE = OB.AE
câu c và d cậu tự làm nhé tớ ko giải dc xin lỗi cậu nha