K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2016

mot hof low 6 thoi

23 tháng 2 2016

Ex và By nằm mặt phẳng bờ chứa đoạn nào

17 tháng 11 2021

a)a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

+ ABAB là tia phân giác của góc HADHAD  

Suy ra: ˆDAB=ˆBAHDAB^=BAH^

+ ACAC là tia phân giác của góc HAEHAE

Suy ra: ˆHAC=ˆCAEHAC^=CAE^

Ta có: ˆHAD+ˆHAE=2(ˆBAH+ˆHAC)HAD^+HAE^=2(BAH^+HAC^)=2.ˆBAC=2.90∘=180∘=2.BAC^=2.90∘=180∘

Vậy ba điểm D,A,ED,A,E thẳng hàng.

b)b) Gọi MM là trung điểm của BCBC

Theo tính chất của tiếp tuyến, ta có: AD⊥BD;AE⊥CEAD⊥BD;AE⊥CE

Suy ra: BD//CEBD//CE

Vậy tứ giác BDECBDEC là hình thang.

Vì MM là trung điểm của BCBC và AA là trung điểm của DEDE (vì DE là đường kính đường tròn (A))

Nên MAMA là đường trung bình của hình thang BDECBDEC

Suy ra: MA//BD⇒MA⊥DEMA//BD⇒MA⊥DE (vì BD⊥DEBD⊥DE)

Trong tam giác vuông ABCABC có AM là đường trung tuyến nên ta có: MA=MB=MC=BC2MA=MB=MC=BC2

Suy ra MM là tâm đường tròn đường kính BCBC với MAMA là bán kính

Vậy DEDE là tiếp tuyến của đường tròn tâm MM đường kính BC.



 

a: Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC

=>E nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC tại trung điểm của AC

b: Xét tứ giác NCMA có

\(\widehat{CNA}=\widehat{CMA}=\widehat{MAN}=90^0\)

=>NCMA là hình chữ nhật

=>NM cắt CA tại trung điểm của mỗi đường

mà I là trung điểm của NM

nên I là trung điểm của CA

Ta có: OE vuông góc AC tại trung điểm của AC(cmt)

mà I là trung điểm của AC

nên OE\(\perp\)AC tại I

=>O,I,E thẳng hàng

c: Gọi giao điểm của CB với AN là F

Ta có: CM\(\perp\)AB

FA\(\perp\)AB

Do đó: CM//FA

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

=>AC\(\perp\)BC tại C

=>AC\(\perp\)FB tại C

=>ΔACF vuông tại C

Xét ΔEAC có EA=EC

nên ΔEAC cân tại E

=>\(\widehat{EAC}=\widehat{ECA}\)

Ta có: \(\widehat{EAC}+\widehat{EFC}=90^0\)(ΔACF vuông tại C)

\(\widehat{ECA}+\widehat{ECF}=\widehat{ACF}=90^0\)

mà \(\widehat{EAC}=\widehat{ECA}\)

nên \(\widehat{EFC}=\widehat{ECF}\)

=>EF=EC

mà EA=EC

nên EF=EA(3)

Xét ΔEAB có KM//AE

nên \(\dfrac{KM}{AE}=\dfrac{BK}{BE}\left(4\right)\)

Xét ΔBFE có CK//FE

nên \(\dfrac{CK}{FE}=\dfrac{BK}{BE}\left(5\right)\)

Từ (3),(4),(5) suy ra \(\dfrac{KM}{AE}=\dfrac{CK}{FE}\)

mà AE=FE

nên KM=CK

=>K là trung điểm của CM

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0