Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải dưới đây:
Câu hỏi của Nguyễn Hoa - Toán lớp 9 | Học trực tuyến
a: Ta có: ΔOAC cân tại O
mà OI là đường trung tuyến
nên OI là đường cao
=>OI//CB
b: Ta có: ΔOAC cân tại O
mà OI là đường cao
nên OI là phân giác của góc AOC
Xét ΔDAO và ΔDCO có
OA=OC
\(\widehat{AOD}=\widehat{COD}\)
OD chung
Do đó: ΔDAO=ΔDCO
SUy ra: \(\widehat{DAO}=\widehat{DCO}=90^0\)
=>DA là tiếp tuyến của (O)
Lời giải:
a)
Xét $(O)$ có $\widehat{ACB}$ là góc nội tiếp chắn nửa đường tròn (do $AB$ là đường kính) nên $\widehat{ACB}=90^0$
$\Rightarrow \triangle ACB$ vuông tại $C$
$\Rightarrow AC\perp BC(1)$
Mặt khác:
$OC=OA=R$ nên tam giác $OAC$ cân tại $O$. Do đó đường trung tuyến $OI$ đồng thời cũng là đường cao. $\Rightarrow OI\perp AC(2)$
Từ $(1);(2)\Rightarrow OI\parallel BC$ (đpcm)
b) $DC$ là tiếp tuyến của $(O)\Rightarrow DC\perp OC$
Vì $OI\perp AC$ và cắt $AC$ tại trung điểm $I$ nên $OI$ là đường trung trực của $AC$. $D\in OI\Rightarrow DC=DA$ (tính chất đường trung trực)
$\Rightarrow \triangle DAO=\triangle DCO(c.c.c)$
$\Rightarrow \widehat{DAO}=\widehat{DCO}=90^0$
$\Rightarrow DA\perp OA$ nên $DA$ là tiếp tuyến của $(O)$
c)
Ta có $CO\parallel BK$ (cùng vuông góc với $CD$)
$\Rightarrow \widehat{OCB}=\widehat{CBK}$ (so le trong)
Và $\widehat{CBH}=\widehat{CBO}=\widehat{OCB}$ (do tam giác $OBC$ cân tại $O$)
$\Rightarrow \widehat{CBH}=\widehat{CBK}$
$\Rightarrow \triangle CBH\sim \triangle CBK (g.g)$
$\Rightarrow \frac{CH}{CK}=\frac{CB}{CB}=1\Rightarrow CH=CK$
$\Rightarrow CK^2=CH^2(*)$
Mà $CH^2=HA.HB(**)$ (theo hệ thức lượng trong tam giác vuông đối với TH tam giác $ACB$ vuông tại $C$, có đường cao $CH$)
Từ $(*); (**)\Rightarrow CK^2=HA.HB$ (đpcm)
Bạn tham khảo lời giải tại link sau:
Câu hỏi của Nguyễn Hoa - Toán lớp 9 | Học trực tuyến