K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 12 2019

Bạn tham khảo lời giải dưới đây:

Câu hỏi của Nguyễn Hoa - Toán lớp 9 | Học trực tuyến

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
15 tháng 12 2016

cố gắng làm hết

giúp mình câu d nha

a: Ta có: ΔOAC cân tại O

mà OI là đường trung tuyến

nên OI là đường cao

=>OI//CB

b: Ta có: ΔOAC cân tại O

mà OI là đường cao

nên OI là phân giác của góc AOC

Xét ΔDAO và ΔDCO có

OA=OC

\(\widehat{AOD}=\widehat{COD}\)

OD chung

Do đó: ΔDAO=ΔDCO

SUy ra: \(\widehat{DAO}=\widehat{DCO}=90^0\)

=>DA là tiếp tuyến của (O)

AH
Akai Haruma
Giáo viên
27 tháng 12 2019

Lời giải:

a)

Xét $(O)$ có $\widehat{ACB}$ là góc nội tiếp chắn nửa đường tròn (do $AB$ là đường kính) nên $\widehat{ACB}=90^0$

$\Rightarrow \triangle ACB$ vuông tại $C$

$\Rightarrow AC\perp BC(1)$

Mặt khác:

$OC=OA=R$ nên tam giác $OAC$ cân tại $O$. Do đó đường trung tuyến $OI$ đồng thời cũng là đường cao. $\Rightarrow OI\perp AC(2)$

Từ $(1);(2)\Rightarrow OI\parallel BC$ (đpcm)

b) $DC$ là tiếp tuyến của $(O)\Rightarrow DC\perp OC$

Vì $OI\perp AC$ và cắt $AC$ tại trung điểm $I$ nên $OI$ là đường trung trực của $AC$. $D\in OI\Rightarrow DC=DA$ (tính chất đường trung trực)

$\Rightarrow \triangle DAO=\triangle DCO(c.c.c)$

$\Rightarrow \widehat{DAO}=\widehat{DCO}=90^0$

$\Rightarrow DA\perp OA$ nên $DA$ là tiếp tuyến của $(O)$

c)

Ta có $CO\parallel BK$ (cùng vuông góc với $CD$)

$\Rightarrow \widehat{OCB}=\widehat{CBK}$ (so le trong)

Và $\widehat{CBH}=\widehat{CBO}=\widehat{OCB}$ (do tam giác $OBC$ cân tại $O$)

$\Rightarrow \widehat{CBH}=\widehat{CBK}$

$\Rightarrow \triangle CBH\sim \triangle CBK (g.g)$

$\Rightarrow \frac{CH}{CK}=\frac{CB}{CB}=1\Rightarrow CH=CK$

$\Rightarrow CK^2=CH^2(*)$

Mà $CH^2=HA.HB(**)$ (theo hệ thức lượng trong tam giác vuông đối với TH tam giác $ACB$ vuông tại $C$, có đường cao $CH$)

Từ $(*); (**)\Rightarrow CK^2=HA.HB$ (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 12 2019

Hình vẽ:
Đường tròn