K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 12 2019

Lời giải:

a)

Xét $(O)$ có $\widehat{ACB}$ là góc nội tiếp chắn nửa đường tròn (do $AB$ là đường kính) nên $\widehat{ACB}=90^0$

$\Rightarrow \triangle ACB$ vuông tại $C$

$\Rightarrow AC\perp BC(1)$

Mặt khác:

$OC=OA=R$ nên tam giác $OAC$ cân tại $O$. Do đó đường trung tuyến $OI$ đồng thời cũng là đường cao. $\Rightarrow OI\perp AC(2)$

Từ $(1);(2)\Rightarrow OI\parallel BC$ (đpcm)

b) $DC$ là tiếp tuyến của $(O)\Rightarrow DC\perp OC$

Vì $OI\perp AC$ và cắt $AC$ tại trung điểm $I$ nên $OI$ là đường trung trực của $AC$. $D\in OI\Rightarrow DC=DA$ (tính chất đường trung trực)

$\Rightarrow \triangle DAO=\triangle DCO(c.c.c)$

$\Rightarrow \widehat{DAO}=\widehat{DCO}=90^0$

$\Rightarrow DA\perp OA$ nên $DA$ là tiếp tuyến của $(O)$

c)

Ta có $CO\parallel BK$ (cùng vuông góc với $CD$)

$\Rightarrow \widehat{OCB}=\widehat{CBK}$ (so le trong)

Và $\widehat{CBH}=\widehat{CBO}=\widehat{OCB}$ (do tam giác $OBC$ cân tại $O$)

$\Rightarrow \widehat{CBH}=\widehat{CBK}$

$\Rightarrow \triangle CBH\sim \triangle CBK (g.g)$

$\Rightarrow \frac{CH}{CK}=\frac{CB}{CB}=1\Rightarrow CH=CK$

$\Rightarrow CK^2=CH^2(*)$

Mà $CH^2=HA.HB(**)$ (theo hệ thức lượng trong tam giác vuông đối với TH tam giác $ACB$ vuông tại $C$, có đường cao $CH$)

Từ $(*); (**)\Rightarrow CK^2=HA.HB$ (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 12 2019

Hình vẽ:
Đường tròn

a: Ta có: ΔOAC cân tại O

mà OI là đường trung tuyến

nên OI là đường cao

=>OI//CB

b: Ta có: ΔOAC cân tại O

mà OI là đường cao

nên OI là phân giác của góc AOC

Xét ΔDAO và ΔDCO có

OA=OC

\(\widehat{AOD}=\widehat{COD}\)

OD chung

Do đó: ΔDAO=ΔDCO

SUy ra: \(\widehat{DAO}=\widehat{DCO}=90^0\)

=>DA là tiếp tuyến của (O)

AH
Akai Haruma
Giáo viên
27 tháng 12 2019

Bạn tham khảo lời giải dưới đây:

Câu hỏi của Nguyễn Hoa - Toán lớp 9 | Học trực tuyến

28 tháng 12 2016

đề sai à p...sao AB<AC đc

24 tháng 11 2019

đề sai thật mà

28 tháng 4 2020

N A B H M C O K I

1) Xét tứ giác CIOH có \(\widehat{CIO}+\widehat{CHO}=180^o\)nên là tứ giác nội tiếp

suy ra 4 điểm C,H,O,I cùng thuộc 1 đường tròn

2) vì OI \(\perp\)AC nên OI là đường trung trực của AC

\(\Rightarrow\widehat{AOM}=\widehat{COM}\)

Xét \(\Delta AOM\)và \(\Delta COM\)có :

\(\widehat{AOM}=\widehat{COM}\)( cmt )  

OM ( chung )

OA = OC

\(\Rightarrow\Delta AOM=\Delta COM\left(c.g.c\right)\)

\(\Rightarrow\widehat{OAM}=\widehat{OCM}=90^o\)

\(\Rightarrow OC\perp MC\)hay MC là tiếp tuyến của đường tròn O

3) Ta có : \(\hept{\begin{cases}\widehat{AOM}+\widehat{IAO}=90^o\\\widehat{IAO}+\widehat{HBC}=90^o\end{cases}}\Rightarrow\widehat{AOM}=\widehat{HBC}\)

Xét \(\Delta AOM\)và \(\Delta HCB\)có :

\(\widehat{AOM}=\widehat{HBC}\)\(\widehat{MAO}=\widehat{CHB}=90^o\)

\(\Rightarrow\Delta AOM~\Delta HBC\left(g.g\right)\)

4) Gọi N là giao điểm của BC và AM

Xét \(\Delta NAB\)có AO = OB ; OM // BN nên AM = MN

CH // AN \(\Rightarrow\frac{CK}{NM}=\frac{KH}{AM}\left(=\frac{BK}{BM}\right)\)

Mà AM = NM nên CK = KH 

\(\Rightarrow\)K là trung điểm của CH

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!Bài 1: Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại Hb) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MACc) Tia BM cắt AO tại N. Chứng minh NA=NHd) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng...
Đọc tiếp

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!

Bài 1: 
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.

Bài 2: 
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD

0