Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK
a, (O) và (I) tiếp xúc trong với nhau
b, Tứ giác ADCE là hình thoi
c, Có CK ⊥ AB, AD ⊥ DB
=> CK//AD mà CE//AD
=> B,K,D thẳng hàng
d, H K D ^ = H D K ^ ; I K B ^ = I B K ^
=> H K D ^ + I K B ^ = I B K ^ + H D K ^ = 90 0
=> I K H ^ = 90 0
a: Xét tứ giác ODAE có
góc ODA+góc OEA=180 độ
=>ODAE là tứ giác nội tiếp
b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)
\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)
c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có
góc IDK chung
=>ΔDIK đồng dạng vơi ΔDHE
=>DI/DH=DK/DE
=>DH*DK=DI*DE=2*IE^2
a) Xét tứ giác ABOC: ^ABO=^ACO=900 (Do AB và AC là 2 tiếp tuyến của (O))
=> Tứ giác ABOC nội tiếp đường tròn dường kính AO (1)
Ta có: DE là dây cung của (O), I là trung điểm DE => OI vuông góc DE => ^OIA=900
Xét tứ giác ABOI: ^ABO=^OIA=900 => Tứ giác ABOI nội tiếp đường tròn đường kính AO (2)
(1) + (2) => Ngũ giác ABOIC nội tiếp đường tròn
Hay 4 điểm B;O;I;C cùng thuộc 1 đường tròn (đpcm).
b) Gọi P là chân đường vuông góc từ D kẻ đến OB
Ta có: Tứ giác BOIC nội tiếp đường tròn => ^ICB=^IOP (Góc ngoài tại đỉnh đối) (3)
Dễ thấy tứ giác DIPO nội tiếp đường tròn đường kính OD
=> ^IOP=^IDP (=^IDK) (4)
(3) + (4) => ^ICB=^IDK (đpcm).
c) ^ICB=^IDK (cmt) => ^ICH=^IDH => Tứ giác DHIC nội tiếp đường tròn
=> ^DIH=^DCH hay ^DIH=^DCB.
Lại có: ^DCB=^DEB (2 góc nội tiếp cùng chắn cung BD) => ^DIH=^DEB
Mà 2 góc trên đồng vị => IH // EB hay IH // EK
Xét tam giác KDE: I là trung điểm DE (Dễ c/m); IH // EK; H thuộc DK
=> H là trung điểm DK (đpcm).
Vì cung ACAC có số đo 50∘50∘ nên ˆAOC=50∘AOC^=50∘
Vì AO⊥CD;AO//DE⇒CD⊥DEAO⊥CD;AO//DE⇒CD⊥DE⇒ˆCDE=90∘⇒CDE^=90∘ mà C,D,E∈(O)C,D,E∈(O) nên CECE là đường kính hay C;O;EC;O;E thẳng hàng
Xét (O)(O) có OAOA là đường cao trong tam giác cân ODCODC nên OAOA cũng là đường phân giác ⇒ˆCOA=ˆAOD=50∘⇒COA^=AOD^=50∘
Lại thấy ˆBOE=ˆAOC=50∘BOE^=AOC^=50∘ (đối đỉnh) suy ra ˆAOC=ˆAOD=ˆBOE=50∘AOC^=AOD^=BOE^=50∘ (D đúng) và suy ra cung ACAC bằng cung BEBE nên B đúng.
Ta có ˆDOE=180∘−ˆAOD−ˆBOE=80∘DOE^=180∘−AOD^−BOE^=80∘ nên cung AD<AD< cung DE⇒AD<DEDE⇒AD<DE hay đáp án A sai.
Lại có ˆAOE=ˆAOD+ˆDOE=50∘+80∘=130∘AOE^=AOD^+DOE^=50∘+80∘=130∘ và ˆBOD=ˆBOE+ˆDOE=50∘+80∘=130∘BOD^=BOE^+DOE^=50∘+80∘=130∘
Nên ˆAOE=ˆBODAOE^=BOD^ suy ra số đo cung AE=AE= số đo cung BD.BD. Do đó C đúng.
Phương án B, C, D đúng và A sai.