Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
Ta có: ΔACD vuông tại C
mà CM là đường trung tuyến ứng với cạnh huyền AD
nên CM=MA
Xét ΔMAO và ΔMCO có
MA=MC
AO=CO
MO chung
Do đó: ΔMAO=ΔMCO
Suy ra: \(\widehat{MAO}=\widehat{MCO}\)
mà \(\widehat{MAO}=90^0\)
nên \(\widehat{MCO}=90^0\)
hay MC là tiếp tuyến của (O)
b) EA và EC là 2 tiếp tuyến của (O) cắt nhau tại E
⇒ EA = EC
Lại có: OA = OC
⇒ OE là đường trung trực của đoạn AC hay OE vuông góc với AC tại trung điểm I của AC
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>ΔACD vuông tại C
mà CM là đường trung tuyến
nên CM=AD/2=AM=DM
Xét ΔMAO và ΔMCO có
MA=MC
MO chung
AO=CO
DO đó: ΔMAO=ΔMCO
Suy ra: \(\widehat{MAO}=\widehat{MCO}=90^0\)
hay MC là tiếp tuyến của (O)
b: Ta có: MC=MA
nên M nằm trên đường trung trực của AC(1)
Ta có: OC=OA
nên O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OM là đường trung trực của AC
hay OM vuông góc với AC tại trung điểm của AC
a: ΔOAC cân tại O có OM là đườg cao
nên OM là phân giác của góc AOC
Xét ΔOAM và ΔOCM có
OA=OC
góc AOM=góc COM
OM chung
=>ΔOAM=ΔOCM
=>góc OCM=90 độ
=>MC là tiếp tuyến của (O)
b: Xét ΔAND vuông tại N và ΔANB vuông tại N có
AN chung
góc NAB=góc NAD
=>ΔAND=ΔANB
=>DN=BN
=>N là trung điểm của BD
c: CN//AB
AB vuông góc CH
=>CN vuông góc CH
=>CN là tiếp tuyến của (O)
b: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔABD có
O là trung điểm của AB
M là trung điểm của AD
Do đó: OM là đường trung bình của ΔABD
Suy ra: OM//BD
hay OM\(\perp\)AC