Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (O) và (I) tiếp xúc trong với nhau
b, Tứ giác ADCE là hình thoi
c, Có CK ⊥ AB, AD ⊥ DB
=> CK//AD mà CE//AD
=> B,K,D thẳng hàng
d, H K D ^ = H D K ^ ; I K B ^ = I B K ^
=> H K D ^ + I K B ^ = I B K ^ + H D K ^ = 90 0
=> I K H ^ = 90 0
A D E K C O O' B H
a) Ta có : OB - O'B = OO'
=> đường tròn (O) và (O'O tiếp xúc trong
b) Ta có : \(OA\perp DE\left(gt\right)\)
=> HD = HE hay H là trung điểm của DE
Theo (gt) : HA = HC
T/g ADCE có 2 đường chéo vuông góc với nhau tại trung điểm mỗi đường
=> T/g ADCE là hình thoi
c) Xét tam giác KBC có :
O'K = O'B = O'C (=bk)
\(\Rightarrow O'K=\frac{1}{2}BC\)
=> Tam giác KBC vuông tại K => \(CK\perp DB\left(1\right)\)
Xét tam giác ADB có :
OD = OA = OB ( =bk )
\(\Rightarrow OD=\frac{1}{2}AB\)
=> Tam giác ADB vuông tại D \(\Rightarrow AD\perp DB\left(2\right)\)
Từ (1) và (2) => CK // AD (*)
Theo ( c/m câu a ) : Tứ giác ADCE là hình thoi
=> CE // AD ( ** )
Từ (*) và (**) => CE và CK là 2 đường thẳng trùng nhau
Vậy : 3 điểm E , C , K thẳng hàng ( đpcm )
B A C O D E K
a. hai đường tròn tiếp xúc trong
b.ADCE là tứ giác thoi do có hai đường chéo vuông góc vcowis nhau tại trung điểm của mỗi đường
c. ta dễ thấy AD//CẺ mà AE vuông gó c với BD nên CE vuông BD
mà CK cũng vuông góc với BD nến C,K,E thẳng hàng
d. ta có do tam giác EKD vuông nên \(HK^2=HD^2=HA.HB=HC.HB\)
do \(HK^2=HC.HB\) nên HK là tiếp tuyến của O'
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
a: OI+IB=OB
=>OI=OB-IB
=>\(OI=R-r\)
=>Hai đường tròn (O) và (I) tiếp xúc trong với nhau tại B
b: Ta có: ΔODE cân tại O
mà OH là đường cao
nên H là trung điểm của DE
Xét tứ giác ADCE có
H là trung điểm chung của AC và DE
=>ADCE là hình bình hành
Hình bình hành ADCE có AC\(\perp\)DE
nên ADCE là hình thoi
c: Xét (I) có
ΔCKB nội tiếp
CB là đường kính
Do đó: ΔCKB vuông tại K
=>CK\(\perp\)KB tại K
=>CK\(\perp\)DB tại K
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)BE tại E
Ta có: ADCE là hình thoi
=>AE//CD
mà AE\(\perp\)EB
nên CD\(\perp\)EB
Xét ΔDEB có
BH,DC là các đường cao
BH cắt DC tại C
Do đó: C là trực tâm của ΔDEB
=>EC\(\perp\)DB
mà CK\(\perp\)DB
và EC,CK có điểm chung là C
nên E,C,K thẳng hàng
d:
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
Xét tứ giác DHCK có \(\widehat{DHC}+\widehat{DKC}=90^0+90^0=180^0\)
nên DHCK là tứ giác nội tiếp
=>\(\widehat{HKC}=\widehat{HDC}\)
mà \(\widehat{HDC}=\widehat{ADH}\)(DH là phân giác của góc ADC do ADCE là hình thoi)
nên \(\widehat{HKC}=\widehat{ADH}\)
mà \(\widehat{ADH}=\widehat{ABD}\left(=90^0-\widehat{DAB}\right)\)
nên \(\widehat{HKC}=\widehat{ABD}\)
Ta có: IC=IK
=>ΔICK cân tại I
=>\(\widehat{ICK}=\widehat{IKC}\)
\(\widehat{HKI}=\widehat{HKC}+\widehat{IKC}\)
\(=\widehat{ABD}+\widehat{ICK}\)
\(=\widehat{KBC}+\widehat{KCB}=90^0\)
=>HK\(\perp\)KI tại K
=>HK là tiếp tuyến tại K của (I)
ở câu b , D ở đâu vậy bạn