Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔMAB nội tiếp
AB là đường kính
=>ΔMAB vuông tại M
Xét tứ giác MEOB có
góc EMB+góc EOB=180 độ
=>MEOB là tứ giác nội tiếp
b: Vì M là điểm chính giữa của cung BC
nên gó MOB=góc MOC=45 độ
góc MEB=góc MOB
góc MBE=góc MOE
mà góc MOE=góc MOB
nên góc MEB=góc MBE
=>ME=MB
=>ΔMEB cân tại M
a, (O) và (I) tiếp xúc trong với nhau
b, Tứ giác ADCE là hình thoi
c, Có CK ⊥ AB, AD ⊥ DB
=> CK//AD mà CE//AD
=> B,K,D thẳng hàng
d, H K D ^ = H D K ^ ; I K B ^ = I B K ^
=> H K D ^ + I K B ^ = I B K ^ + H D K ^ = 90 0
=> I K H ^ = 90 0
Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OA là đường trung trực của MN
=>OA\(\perp\)MN tại I
Xét ΔOHA vuông tại H và ΔOIC vuông tại I có
\(\widehat{HOA}\) chung
Do đó: ΔOHA~ΔOIC
=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)
=>\(OH\cdot OC=OA\cdot OI\)
mà \(OA\cdot OI=OM^2=OB^2\)
nên \(OB^2=OH\cdot OC\)
=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)
Xét ΔOBC và ΔOHB có
\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)
\(\widehat{BOC}\) chung
Do đó: ΔOBC~ΔOHB
=>\(\widehat{OBC}=\widehat{OHB}\)
mà \(\widehat{OHB}=90^0\)
nên \(\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
mà OA⋅OI=OM2=OB2
nên OB2=OH⋅OC
đoạn này không hiểu ạ , góc B đã vuông đâu
a: Xét (O) có
OH là một phần đường kính
DE là dây
OH\(\perp\)DE tại H
Do đó: H là trung điểm của DE
Xét tứ giác CDAE có
H là trung điểm của đường chéo DE
H là trung điểm của đường chéo CA
Do đó: CDAE là hình bình hành
mà CA\(\perp\)DE
nên CDAE là hình thoi
23423
hả ngĩa là j