K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

A B D E K O

a, Có O là trung điểm của AB(1)

D là trung điểm của AE ( E đối xứng với A qua D)(2)

Từ (1) và (2)

=> OD là đường trung bình ( t/c đường trung bình )

=>\(\hept{\begin{cases}OD//BE\\OD=\frac{1}{2}BE\end{cases}}\)(t/c đường trung bình )

=>BE=2OD

=>BE=2R (OD=R)

Có AB=BE(=R)

=> \(\Delta ABE\)là \(\Delta\) cân ( đ/n  \(\Delta\) cân)

b,Có \(\widehat{AKB}\)là góc nội tiếp chắn nửa đường tròn đường kính AB

=> \(\widehat{AKB}\) =90(hệ quả góc nội tiếp )

=>AK\(\perp\)KB ( t/c 2 đt vuông góc )

=> AK\(\perp\)BE (K \(\in\)BE)(3)

Mà OD//BE (cmt)(4)

Từ (3) và (4)

=> OD\(\perp\)AK(từ \(\perp\)=> //)

a: Xét (O) có

ΔBDA nội tiép

BA là đường kính

=>ΔBDA vuông tại D

Xét ΔBEA có

BD vừa là đường cao, vừa là trung tuyến

nên ΔBAE cân tại B

b: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

Xét ΔAEBcó AO/AB=AD/AE

nên OD//EB

mà AK vuông góc với EB

nên AK vuông góc với OD

10 tháng 1 2017

a, Chứng minh được ∆BAE cân tại B

b, Chứng minh được DO//BE (tính chất đường trung bình)

c, Mà AK ⊥ BE ( A K B ^ = 90 0 ) => AK ⊥ DO

26 tháng 10 2021

a: Xét ΔABE có 

O là trung điểm của AB

D là trung điểm của AE

Do đó: OD là đường trung bình của ΔABE

Suy ra: OD//EB

=> AB=AE

hay ΔABE cân tại A

2 tháng 5 2020

LA 1111777779990000AAAAADDDBBNNIY

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xet ΔNAB có

AC.BM là các đường cao

AC cắt BM tại E

Do đó: E là trực tâm

=>NE vuông góc với AB

b: Xét tứ giác NEAF có

M là trung điểm chung của NA và EF

nên NEAF là hình bình hành

=>NE//AF

=>AF vuông góc với AB

=>FA là tiêp tuyến của (O)