Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Kẻ \(OI\perp MN;OK\perp PQ\)
\(MI^2=OM^2-OI^2\Rightarrow MN^2=4R^2-4OI^2\)
\(PK^2=OP^2-OK^2\Rightarrow PQ^2=4R^2-4OK^2\)
\(\Rightarrow MN^2+PQ^2=8R^2-4\left(OI^2+OK^2\right)=8R^2-4OH^2\)
Áp dụng đẳng thức: \(x^2+y^2=\frac{\left(x+y\right)^2}{2}+\frac{\left(x-y\right)^2}{2}\)
Ta có: \(MN^2+PQ^2=\frac{\left(MN+PQ\right)^2}{2}+\frac{\left(MN-PQ\right)^2}{2}\)
\(\Leftrightarrow\left(MN+PQ\right)^2=2\left(MN^2+PQ^2\right)-\left(MN-PQ\right)^2\)
\(\Leftrightarrow MN+PQ=\sqrt{8\left(2R^2-OH^2\right)-\left(MN-PQ\right)^2}\)
Do \(8\left(2R^2-OH^2\right)\)không đổi nên
\(\left(MN+PQ\right)_{min}\Leftrightarrow\left(MN-PQ\right)^2_{max}\Leftrightarrow\hept{\begin{cases}MN_{max}\\PQ_{min}\end{cases}}\)hoặc \(\hept{\begin{cases}MN_{min}\\PQ_{max}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}MN=2R\\PQ\perp AB\left(H\right)\end{cases}}\)hoặc \(\Leftrightarrow\hept{\begin{cases}PQ=2R\\MN\perp AB\left(H\right)\end{cases}}\)
+) \(\left(MN+PQ\right)_{max}\Leftrightarrow\left(MN-PQ\right)^2_{min}\)\(\Leftrightarrow MN=PQ\Leftrightarrow OI=OK\Rightarrow\widehat{MHA}=\widehat{PHA}=45^0\)
a) Để chứng minh KC = KD, ta sử dụng tính chất của đường tròn và đường thẳng vuông góc. Vì CD là đường thẳng vuông góc với AB tại I, nên OC là đường phân giác của góc ACB. Tương tự, OD là đường phân giác của góc ADB. Do đó, OC và OD cắt nhau tại O và là đường phân giác chung của góc ACB và ADB. Vì OC và OD cắt nhau tại O, nên O là trung điểm của CD. Do đó, KC = KD.
b) Để xác định vị trí điểm I để diện tích tứ giác ACBD lớn nhất, ta cần tìm điểm I sao cho diện tích tứ giác ACBD đạt giá trị lớn nhất. Để làm điều này, ta có thể sử dụng phương pháp đạo hàm để tìm điểm I tương ứng với giá trị cực đại của diện tích tứ giác ACBD.