\(AI=\frac{2}{3}AO\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

c, Mình không vẽ được hình nên bạn thông cảm Gọi tâm đường tròn ngoại tiếp tam giác CME là K

Từ câu b : AM^2=AE.AC

Mà AC là cát tuyến của đường tròn ngoại tiếp tam giác CME

=> AM là tiếp tuyến của đường tròn ngoại tiếp tam giác CME

=> \(AM\perp MK\)

Mà \(AM\perp MB\)

=> M,K,B thẳng hàng

=> \(K\in MB\)cố định

Khi đó để NKmin thì K là hình chiếu của N lên MB

Đến đây bạn tự tính NK nhé

Sau đó từ MK để xác định điểm C

7 tháng 6 2019

c) 

5. Theo trên:  \(\widehat{AMN}=\widehat{ACM}\)

=> AM là tiếp tuyến của đường tròn  ngoại tiếp \(\Delta\) ECM;

Nối MB ta có\(\widehat{AMB}\)= 900 , do đó tâm O1 của đường tròn  ngoại tiếp\(\Delta\)ECM phải nằm trên BM

. Ta thấy NO1 nhỏ nhất khi NO1 là khoảng cách từ N đến BM => NO1 \(\perp\)BM.

Gọi Olà chân đường vuông góc kẻ từ N đến BM ta được:

O1 là tâm đường tròn  ngoại tiếp D ECM có bán kính là O1M.

Do đó để khoảng cách từ N đến tâm đường tròn  ngoại tiếp tam giác  CME là nhỏ nhất thì C phải là giao điểm của đường tròn  tâm O1 bán kính O1M với đường tròn  (O) trong đó Olà hình chiếu vuông góc của N trên BM.