K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 6 2020

Hình vẽ:
Violympic toán 9

AH
Akai Haruma
Giáo viên
23 tháng 6 2020

Lời giải:
Xét tam giác $MRS$ và $PRN$ có:

$\widehat{MRS}=\widehat{PRN}$ (đối đỉnh)

$\widehat{RMS}=\widehat{RPN}$ (góc nội tiếp cùng chắn cung $SN$)

$\Rightarrow \triangle MRS\sim \triangle PRN$ (g.g)

$\Rightarrow \frac{MR}{MS}=\frac{PR}{PN}(*)$

Xét tam giác $PRO$ và $PQS$ có:

$\widehat{POR}=\widehat{PSQ}(=90^0)$

Chung góc $\widehat{P}$

$\Rightarrow \triangle PRO\sim \triangle PQS$ (g.g)

$\Rightarrow \frac{SQ}{OR}=\frac{PQ}{PR}(**)$

Từ $(*); (**)\Rightarrow \frac{MR}{MS}.\frac{SQ}{OR}=\frac{PQ}{PN}=\frac{2R}{\sqrt{PO^2+ON^2}}=\frac{2R}{\sqrt{R^2+R^2}}=\sqrt{2}$ (đpcm)

a: góc AMB=1/2*180=90 độ

góc IOA+góc IMA=90+90=180 độ

=>IMAO nội tiếp

b: góc MIC=1/2(sđ cung MC+sđ cung DB)

=1/2(sđ cung MC+sđ cung CB)

=1/2*sđ cung MB

=góc MDB

c: Xét ΔDAK và ΔDMA có

góc DAK=góc DMA
góc ADK chung

=>ΔDAK đồng dạng với ΔDMA

=>DA^2=DK*DM 

=>DK*DM ko phụ thuộc vào vị trí của M

8 tháng 9 2018

a, HS tự chứng minh

b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA

c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AKBN nên có ĐPCM

Chứng minh tứ giác EKBH nội tiếp, từ đó có  A K F ^ = A B M ^

d, Lấy P và G lần lượt là trung điểm của AC và OP

Chứng minh I thuộc đường tròn (G, GA)