Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Ta sẽ chứng minh O thuộc (ATN).
Ta có \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => ^OAC = ^OAB = ^OBA => ^OAT = ^OBN
Ta thấy ^NBM = ^ABC = ^ACB = ^NMB (Do MN // AC) => \(\Delta\)MNB cân tại N => BN = MN
Lại có AN // TM, AT // MN suy ra tứ giác ATMN là hình bình hành => MN = AT
Do đó BN = AT, kết hợp với ^OAT = ^OBN, OA = OB suy ra \(\Delta\)OTA = \(\Delta\)ONB (c.g.c)
=> ^OTA = ^ONB = ^ONA => Bốn điểm O,A,T,N cùng thuộc một đường tròn
Hay đường tròn (ATN) luôn đi qua điểm O cố định (đpcm).
1: góc ACB=góc ADB=1/2*sđ cung AB=90 độ
=>AC vuông góc CB và AD vuông góc DB
=>góc ECM=90 độ=góc EDM
=>CEDM nội tiếp
AC vuông góc CB
AD vuông góc DB
=>AD,BC là 2 đường cao của ΔAEB
=>M là trực tâm
=>AM vuông góc AB
ΔMDB vuông tại D nên ΔMDB nội tiếp đường tròn đường kính MB
=>BM là đường kính của (I)
=>góc MNB=90 độ
=>MN vuông góc AB
=>E,M,N thẳng hàng
b: AM vuông góc AB
=>góc ANM=90 độ
góc ANM+góc ACM=180 độ
=>ACMN nội tiếp
=>góc CAM=góc CNM=góc ADF
=>góc CAM=góc ADF
=>DF//AB
Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE=góc CAB
Do đó: ΔADE đồng dạng với ΔACB
=>góc ADE=góc ACB và góc AED=góc ABC
=>góc ADE=góc BAH và góc AED=góc CAH
=>gó MAD=góc MDA và góc MAE=góc MEA
=>MD=ME=MA
=>M là tâm đường tròn ngoại tiếp ΔADE