Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có
CM,CA là các tiếp tuyến
nen CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC vuông góc với MA tại trung điểm của MA
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD vuông góc với MB tại trung điểm của MB
Từ (1)và (2) suy ra góc COD=1/2*180=90 độ
=>O nằm trên đường tròn đường kính DC
b: Xét tứ giác MIOK có
góc MIO=góc IOK=góc MKO=90 độ
nên MIOK là hình chữ nhật
=>MO=IK
c: Xét hình thang ABDC có
O,O' lần lượt là trung điểm của AB,CD
nên OO' là đường trung bình
=>OO' vuông góc với AB
=>AB là tiếp tuyến của (O')

a: Xét ΔOAI vuông tại A và ΔOBD vuông tại B có
OA=OB
góc AOI=góc BOD
Do đo; ΔOAI=ΔOBD
=>OI=OD
b: Xét ΔCID có
CO vừa là đường cao, vừa là trung tuyến
nên ΔCID cân tại C
=>CO là phân giác của góc DCI
Kẻ OO' vuông góc vớiCD
Xét ΔCAO vuôngtại A và ΔCO'O vuông tại O' có
CO chung
góc ACO=góc O'CO
Do đo: ΔCAO=ΔCO'O
=>OA=OO'=R
=>CD là tiếp tuyến của (O)
c: Xet (O) có
DO',DB là các tiếp tuyến
nên DO'=DB
CD=CO'+O'D
=>CD=CA+BD

a: Xét tứ giác OBAC có \(\hat{OBA}+\hat{OCA}=90^0+90^0=180^0\)
nên OBAC là tứ giác nội tiếp đường tròn đường kính OA
=>O,B,A,C cùng thuộc đường tròn đường kính OA
ta có: OI+IA=OA
=>IA=OA-OI=2R-R=R
=>OI=IA
=>I là trung điểm của OA
=>Tâm của đường tròn chứa bốn điểm O,A,B,C là I
b:
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
ta có; OK⊥OB
OB⊥BA
Do đó: OK//BA
=>\(\hat{KOA}=\hat{BAO}\) (hai góc so le trong)
mà \(\hat{BAO}=\hat{KAO}\) (AO là phân giác của góc BAC)
nên \(\hat{KOA}=\hat{KAO}\)
=>ΔKOA cân tại K
c: ΔKOA cân tại K
mà KI là đường trung tuyến
nên KI⊥OA tại I
=>KI⊥OI tại I
=>KI là tiếp tuyến của (O)