Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AC=AD
OC=OD
=>AO là trung trực của CD
=>OA vuông góc CD tại I
góc AMB=1/2*180=90 độ
góc KMB+góc KIB=180 độ
=>KMBI nội tiếp
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
=>ΔAMB vuông tại M
Xét tứ giác BMIJ có
góc IJB+góc IMB=180 độ
=>BMIJ là tứ giác nội tiếp
b: BMIJ là tứgiác nội tiếp
=>góc MJI=góc MBI
Xét tứ giác CAJI có
góc ACI+góc AJI=180 độ
=>CAJI là tứ giác nội tiêp
=>góc CJI=góc CAI
góc MJI=góc MBI
mà góc CAI=góc MBI
nên góc CJI=góc MJI
=>JI là phân giác của góc CJM
a) (Ta sẽ dùng phương pháp chồng hình, còn gọi là chứng minh bằng trùng hình.)
Vẽ tia \(AD'\) thỏa mãn \(\widehat{BAD'}=\widehat{MAC}\) và \(D'\) nằm trên \(\left(O\right)\).
Khi đó, \(\widehat{D'BC}=\widehat{D'AC}=\widehat{BAM}\) và ta suy ra \(D'B\) tiếp xúc với đường tròn ngoại tiếp \(ABM\).
Tương tự, \(D'C\) tiếp xúc với đường tròn ngoại tiếp \(ACM\) và ta suy ra \(D=D'\).
Vậy \(ABDC\) nội tiếp.
b) Hiển nhiên do \(\widehat{BAD}=\widehat{KAC}\).
c) (Vẫn chồng hình) Gọi \(E'\) đối xứng với \(K\) qua \(M\) suy ra \(E'BKC\) là hình bình hành.
Từ đó có \(E'B=KC=DB\) hay tam giác \(E'BD\) cân tại \(B\).
Mặt khác CM được \(BC\) là phân giác \(\widehat{E'BD}\) nên ta được \(E'\) đối xứng với \(D\) qua \(BC\).
Vậy \(E=E'\) hay \(A,E,M\) thẳng hàng.
-----
(P/S: Nếu để ý sẽ thấy tia \(AD'\) và \(AM\) thỏa tc góc ở trên sẽ đối xứng nhau qua đường phân giác \(\widehat{BAC}\). Vì thế tia \(AD'\) gọi là đường "đối trung" của tam giác \(ABC\) (ĐỐI XỨNG của TRUNG TUYẾN qua phân giác). Đường này mà cho lớp 9 toán thường thì hơi khó đó.)
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
a) Do AMNP là hình vuông nên \(\widehat{QMB}=45^o\)
Lại có do C là điểm chính giữa của nửa đường tròn nên \(\widebat{CB}=90^o\Rightarrow\widehat{CMB}=45^o\)
(Góc nội tiếp)
Vậy thì \(\widehat{CMQ}=\widehat{CMB}+\widehat{BMQ}=45^o+45^o=90^o\)
Vậy CQ là đường kính hay C và Q đối xứng nhau qua O.
b) Ta thấyAMNP là hình vuông. MI là phân giác góc \(\widehat{AMB}\) nên \(\Delta MAI=\Delta MNI\left(c-g-c\right)\Rightarrow\widehat{MAI}=\widehat{MNI}\)
Lại có \(\widehat{MAI}=\widehat{IAM}\) nên \(\widehat{MNI}=\widehat{IAM}\)
Xét tứ giác AINB có \(\widehat{MNI}=\widehat{IAM}\) nên AINB là tứ giác nội tiếp (góc ngoài tại đỉnh bằng góc đối diện)