K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AC=AD

OC=OD

=>AO là trung trực của CD

=>OA vuông góc CD tại I

góc AMB=1/2*180=90 độ

góc KMB+góc KIB=180 độ

=>KMBI nội tiếp

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

=>ΔAMB vuông tại M

Xét tứ giác BMIJ có

góc IJB+góc IMB=180 độ

=>BMIJ là tứ giác nội tiếp

b: BMIJ là tứgiác nội tiếp

=>góc MJI=góc MBI

Xét tứ giác CAJI có

góc ACI+góc AJI=180 độ

=>CAJI là tứ giác nội tiêp

=>góc CJI=góc CAI

góc MJI=góc MBI

mà góc CAI=góc MBI

nên góc CJI=góc MJI

=>JI là phân giác của góc CJM

 

22 tháng 1 2017

A B C D E K M

a) (Ta sẽ dùng phương pháp chồng hình, còn gọi là chứng minh bằng trùng hình.)

Vẽ tia \(AD'\) thỏa mãn \(\widehat{BAD'}=\widehat{MAC}\) và \(D'\) nằm trên \(\left(O\right)\).

Khi đó, \(\widehat{D'BC}=\widehat{D'AC}=\widehat{BAM}\) và ta suy ra \(D'B\) tiếp xúc với đường tròn ngoại tiếp \(ABM\).

Tương tự, \(D'C\) tiếp xúc với đường tròn ngoại tiếp \(ACM\) và ta suy ra \(D=D'\).

Vậy \(ABDC\) nội tiếp.

b) Hiển nhiên do \(\widehat{BAD}=\widehat{KAC}\).

c) (Vẫn chồng hình) Gọi \(E'\) đối xứng với \(K\) qua \(M\) suy ra \(E'BKC\) là hình bình hành.

Từ đó có \(E'B=KC=DB\) hay tam giác \(E'BD\) cân tại \(B\).

Mặt khác CM được \(BC\) là phân giác \(\widehat{E'BD}\) nên ta được \(E'\) đối xứng với \(D\) qua \(BC\).

Vậy \(E=E'\) hay \(A,E,M\) thẳng hàng.

-----

(P/S: Nếu để ý sẽ thấy tia \(AD'\) và \(AM\) thỏa tc góc ở trên sẽ đối xứng nhau qua đường phân giác \(\widehat{BAC}\). Vì thế tia \(AD'\) gọi là đường "đối trung" của tam giác \(ABC\) (ĐỐI XỨNG của TRUNG TUYẾN qua phân giác). Đường này mà cho lớp 9 toán thường thì hơi khó đó.)

4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề 

21 tháng 11 2017

O B A C M N P Q I K

a) Do AMNP là hình vuông nên \(\widehat{QMB}=45^o\)

Lại có do C là điểm chính giữa của nửa đường tròn nên \(\widebat{CB}=90^o\Rightarrow\widehat{CMB}=45^o\)

(Góc nội tiếp)

Vậy thì \(\widehat{CMQ}=\widehat{CMB}+\widehat{BMQ}=45^o+45^o=90^o\)

Vậy CQ là đường kính hay C và Q đối xứng nhau qua O.

b) Ta thấyAMNP là hình vuông.  MI là phân giác góc \(\widehat{AMB}\)  nên \(\Delta MAI=\Delta MNI\left(c-g-c\right)\Rightarrow\widehat{MAI}=\widehat{MNI}\)

Lại có \(\widehat{MAI}=\widehat{IAM}\) nên \(\widehat{MNI}=\widehat{IAM}\)

Xét tứ giác AINB có  \(\widehat{MNI}=\widehat{IAM}\) nên AINB là tứ giác nội tiếp (góc ngoài tại đỉnh bằng góc đối diện)