Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
OH là một phần đường kính
AB là dây
OH⊥AB tại H
Do đó: H là trung điểm của AB
Xét ΔMAB có
MH là đường trung tuyến
MH là đường cao
Do đó:ΔMAB cân tại M
Xét ΔOAM và ΔOBM có
OA=OB
AM=BM
OM chung
Do đó:ΔOAM=ΔOBM
Suy ra: \(\widehat{OAM}=\widehat{OBM}=90^0\)
=>ΔOMB vuông tại B
=>MB là tiếp tuyến
b: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó:ΔABC vuông tại A
a) Xét (O) có
ΔABC nội tiếp đường tròn(A,B,C∈(O))
AB là đường kính
Do đó: ΔABC vuông tại C(Định lí)
b) Áp dụng định lí Pytago vào ΔABC vuông tại C, ta được:
\(AB^2=BC^2+AC^2\)
\(\Leftrightarrow BC^2=AB^2-AC^2=\left(2\cdot R\right)^2-R^2=3\cdot R^2\)
hay \(BC=R\cdot\sqrt{3}\)(đvđd)
Xét ΔABC vuông tại C có
\(\sin\widehat{A}=\dfrac{BC}{AB}=\dfrac{R\sqrt{3}}{2R}=\dfrac{\sqrt{3}}{2}\)
hay \(\widehat{A}=60^0\)
Xét ΔABC vuông tại C có
\(\widehat{A}+\widehat{B}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{B}=30^0\)
Vậy: \(BC=R\cdot\sqrt{3}\)(đvđd); \(\widehat{A}=60^0\); \(\widehat{B}=30^0\)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Ta có: AC⊥CB
OD⊥CB
Do đó: AC//OD
a) Xét (O) có
ΔABC nội tiếp đường tròn(A,B,C∈(O))
AB là đường kính
Do đó: ΔABC vuông tại C(Định lí)
b) Xét ΔABC vuông tại C có
\(\sin\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{R}{2R}=\dfrac{1}{2}\)
hay \(\widehat{ABC}=30^0\)
Vậy: \(\widehat{ABC}=30^0\)
c)
Xét ΔOBC có OB=OC(=R)
nên ΔOBC cân tại O(Định nghĩa tam giác cân)
Xét ΔOBC cân tại O có OM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên OM là đường phân giác ứng với cạnh BC(Định lí tam giác cân)
⇒\(\widehat{BOM}=\widehat{COM}\)
hay \(\widehat{BON}=\widehat{CON}\)
Xét ΔBON và ΔCON có
OB=OC(=R)
\(\widehat{BON}=\widehat{CON}\)(cmt)
ON chung
Do đó: ΔBON=ΔCON(c-g-c)
⇒\(\widehat{OBN}=\widehat{OCN}\)(hai góc tương ứng)
mà \(\widehat{OBN}=90^0\)(NB⊥OB tại B)
nên \(\widehat{OCN}=90^0\)
hay NC⊥OC tại C
Xét (O) có
OC là bán kính
NC⊥OC tại C(cmt)
Do đó: NC là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)