K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

a, Xét tam giác MON có : OM = ON = R

=> tam giác MON cân tại O, do OI vuông MN hay OI là đường cao 

đồng thời là đường phân giác => ^MOI = ^ION 

Vì BN là tiếp tuyến đường tròn (O) với N là tiếp điểm 

=> ON vuông BN hay ^ONB = 900 

Xét tam giác IOM và tam giác NOB có : 

^IOM = ^NOB ( cmt )

^OIM = ^ONB = 900

Vậy tam giác IOM ~ tam giác NOB ( g.g ) 

=> \(\frac{IO}{NO}=\frac{IM}{NB}\Rightarrow IO.NB=IM.NO\)

ý b sáng mai mình gửi nhé ;)) 

16 tháng 10 2021

 sửa hộ mình chỗ này nhé : ^OIM = ^ONB = 900 

b,  Vì I là trung điểm điểm OA => \(IO=IA=\frac{OA}{2}=\frac{R}{2}\)

Theo định lí Pytago tam giác OIM ta được : 

\(MI=\sqrt{OM^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\sqrt{\frac{3R^2}{4}}=\frac{\sqrt{3}R}{2}\)

Vì BM là tiếp tuyến đường tròn (O) và M là tiếp điểm 

=> OM vuông MB hay ^OMB = 900 => tam giác OMB vuông tại M 

Xét tam giác OMB vuông tại M, đường cao MI 

Áp dụng hệ thức : \(\frac{1}{OM^2}+\frac{1}{MB^2}=\frac{1}{MI^2}\Rightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{1}{\frac{3R^2}{4}}\)

\(\Leftrightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{4}{3R^2}\Leftrightarrow\frac{1}{MB^2}=\frac{4}{3R^2}-\frac{1}{R^2}=\frac{1}{3R^2}\Rightarrow MB=\sqrt{3}R\)

CM : tam giác OMB = tam giác ONB ( ch - gn ) 

Ta có : \(S_{OMNB}=S_{OMB}+S_{ONB}=2S_{OMB}=\frac{2.1}{2}.OM.MB\)

\(=R.\sqrt{3}R=\sqrt{3}R^2\)

16 tháng 12 2015

tick mik đc 300 điểm hỏi đáp nha,mik sẽ tick lại

20 tháng 11 2017

a/ * dựa vào tính chất đường trung tuyến ứng vs 1 cạnh = 1/2 cạnh ấy thì tam giác đó vuông ta sẽ CM đc tg BCD vuông tại C

    *Có AC=AB(vì đg thẳng là tiếp tuyến của đg tròn vuông góc với bk đi qua tiếp điểm)

=>A cách đều A và B

=>AH vuông góc BC

b/Áp dụng hệ thức lượng trong tam giác vuông ABO có : OH.OA=OB^2=R^2

mk cx đg làm bài này nhg ms chỉ đến đây thôi

24 tháng 11 2017

OABCDHEMNFK

a) Do C thuộc đường tròn mà DB là đường kính nên góc \(\widehat{BCD}\) chắn nửa đường tròn.

\(\Rightarrow\widehat{BCD}=90^o\Rightarrow BC\perp DC\)

Theo tính chất hai tiếp tuyến cắt nhau, ta có OH là phân giác góc BOC. Lại có OBC là tam giác cân tại O nên OH cũng là đường cao.

Vậy \(OH\perp BC\)

b) Xét tam giác vuông OCA có CH là đường cao nên áp dụng hệ thức lượng trong tam giác vuông, ta có:   \(OH.OA=OC^2=R^2\)

Xét tam giác vuông DBA có đường cao BE nên áp dụng hệ thức lượng trong tam giác vuông, ta có: 

\(DE.DA=BD^2=\left(2R\right)^2=4R^2\)

c) Xét tam giác MBA có OH và BE là các đường cao nên N là trực tâm.

Vậy thì \(MN\perp BA\)

Lại có \(BD\perp BA\) nên BD // MN.

d) Ta chứng minh \(OF\perp AD\)

Ta có \(\widehat{BCA}=\widehat{DCO}\) (Cùng phụ với góc OCB)

\(\Rightarrow\widehat{BCA}+90^o=\widehat{DCO}+90^o\Rightarrow\widehat{DCA}=\widehat{FCO}\)  (1)

Ta cũng có tứ giác ABOC nội tiếp nên \(\widehat{CAO}=\widehat{CBO}\)

Mà \(\widehat{CBO}=\widehat{CDF}\) (Cùng phụ với góc CFD)

\(\Rightarrow\widehat{CAO}=\widehat{CDF}\)

Vậy thì \(\Delta CAO\sim\Delta CDF\left(g-g\right)\Rightarrow\frac{CA}{CD}=\frac{CO}{CF}\Rightarrow\frac{CA}{CO}=\frac{CD}{CF}\) (2)

Từ (1) và (2) suy ra \(\Delta DCA\sim\Delta FCO\left(c-g-c\right)\Rightarrow\widehat{ADC}=\widehat{OFC}\)

\(\Rightarrow\widehat{ADF}-\widehat{CDF}=\widehat{CFD}-\widehat{OFD}\)

\(\Rightarrow\widehat{ADF}+\widehat{OFD}=\widehat{CFD}+\widehat{CDF}=90^o\)

\(\Rightarrow\widehat{DKF}=90^o\Rightarrow OF\perp AD\)

Xét tam giác cân DOE có OK là đường cao nên đồng thời là trung tuyến. Vậy K là trung điểm DE.

Xét tam giác vuông ABD có BE là đường cao nên \(\frac{1}{BE^2}=\frac{1}{BA^2}+\frac{1}{BD^2}=\frac{1}{5R^2}+\frac{1}{4R^2}=\frac{9}{20R^2}\)

\(\Rightarrow BE^2=\frac{20R^2}{9}\)

Xét tam giác vuông BED, theo định lý Pi-ta-go ta có:

\(DE^2=BD^2-BE^2=4R^2-\frac{20R^2}{9}=\frac{16R^2}{9}\)

\(\Rightarrow DE=\frac{4R}{3}\)

\(\Rightarrow KE=\frac{2R}{3}\)

24 tháng 11 2017

Cảm ơn ạ 

21 tháng 1 2018
Mình gợi ý bạn theo đó làm nha. 1. bạn gọi giao điểm của OA là K. Xét 2 tam giác vuông AOB và AOC có trung tuyến ứng với cạnh huyền nên bằng 1/2 cạnh đó. từ đó suy ra KO=KB=KC=KA. nên 4 điểm đó thuộc 1 đường tròn 2. Gọi giao điểm của OA và BC là M. cm M là trung điểm của BC rồi tính BM từ đó tính được AB theo hệ thức lượng trong tg vuông rồi tính OA theo định lí Pytago 3. bạn c/m BH//AC =>góc HBC= góc BCA. Mà góc BCA =góc CBA(tự cm) =>góc HBC = góc CBA. nên BC là tia pg
1 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Bài tập Tất cả