Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
b: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔDBA vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(3\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(4\right)\) và \(OH\cdot OA=OB^2\)
Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)
c: Xét ΔOKH vuông tại K và ΔOIA vuông tại I có
\(\widehat{KOH}\) chung
Do đó: ΔOKH đồng dạng với ΔOAI
=>\(\dfrac{OK}{OA}=\dfrac{OH}{OI}\)
=>\(OK\cdot OI=OH\cdot OA\)
mà \(OH\cdot OA=OB^2\)
nên \(OK\cdot OI=OB^2=R^2=OD^2\)
=>\(\dfrac{OK}{OD}=\dfrac{OD}{OI}\)
Xét ΔOKD và ΔODI có
\(\dfrac{OK}{OD}=\dfrac{OD}{OI}\)
\(\widehat{KOD}\) chung
Do đó: ΔOKD đồng dạng với ΔODI
=>\(\widehat{ODK}=\widehat{OID}=90^0\)
=>KD là tiếp tuyến của (O)
a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng nằm trên 1 đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔABD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\)(3)
=>\(AE\cdot AD=AC^2\)
Xét ΔABO vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(4\right)\)
Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)
=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
góc EAH chung
Do đó: ΔAEH đồng dạng với ΔAOD
=>\(\widehat{AHE}=\widehat{ADO}\)
c: Ta có: ΔOED cân tại O
mà OK là đường trung tuyến
nên OK\(\perp\)ED tại K
Xét ΔBOA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\)
Xét ΔOKA vuông tại K và ΔOHF vuông tại H có
\(\widehat{KOA}\) chung
Do đó: ΔOKA đồng dạng với ΔOHF
=>\(\dfrac{OK}{OH}=\dfrac{OA}{OF}\)
=>\(OK\cdot OF=OA\cdot OH\)
=>\(OK\cdot OF=R^2=OD^2\)
=>\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)
Xét ΔOKD và ΔODF có
\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)
góc KOD chung
Do đó: ΔOKD đồng dạng với ΔODF
=>\(\widehat{OKD}=\widehat{ODF}\)
=>\(\widehat{ODF}=90^0\)
=>FD là tiếp tuyến của (O)
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Bổ sung đề: đường kính BD
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC(3)
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD(4)
Từ (3) và (4) suy ra OH//DC
Xét ΔBCD có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}=\dfrac{1}{2}\)
=>DC=2OH
c: Bổ sung đề; AD cắt (O) tại điểm thứ hai là E
Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔBDA vuông tại B có BElà đường cao
nên \(AE\cdot AD=AB^2\left(5\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(6\right)\)
Từ (5) và (6) suy ra \(AE\cdot AD=AH\cdot AO\)
=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{EAH}\) chung
Do đó: ΔAEH đồng dạng với ΔAOD
=>\(\widehat{AHE}=\widehat{ADO}\)
a: \(AB=\sqrt{10^2-6^2}=8\left(cm\right)\)
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó:AB=AC
mà OB=OC
nên AO là đường trung trực của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(BH\cdot AO=BO\cdot BA\)
hay BH=4,8(cm)
cho hỏi thêm xíu là tại sao BH là đường cao ạ