Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAS vuông tại A có
\(OS^2=OA^2+AS^2\)
hay AS=4(cm)
Xét ΔOAS vuông tại A có
\(\sin SOA=\dfrac{AS}{OS}=\dfrac{4}{5}\)
hay \(\widehat{SOA}=53^0\)
b: Xét ΔOAB có OA=OB
nên ΔOAB cân tại O
mà OI là đường cao
nên OI là đường phân giác
hay OS là tia phân giác của góc AOB
Xét ΔAOS và ΔBOS có
OA=OB
\(\widehat{AOS}=\widehat{BOS}\)
OS chung
Do đó: ΔAOS=ΔBOS
Suy ra: \(\widehat{OAS}=\widehat{OBS}=90^0\)
hay SB là tiếp tuyến của (O)
a: ΔOEH cân tại O
mà OM là đường cao
nên M là trung điểm của EH và OM là phân giác của góc EOH
ΔOME vuông tại M
=>\(MO^2+ME^2=OE^2\)
=>\(ME^2=5^2-3^2=16\)
=>\(ME=\sqrt{16}=4\left(cm\right)\)
M là trung điểm của EH
=>EH=2*ME=8(cm)
b:
OM là phân giác của góc EOH
mà A\(\in\)OM
nên OA là phân giác của góc EOH
Xét ΔOEA và ΔOHA có
OE=OH
\(\widehat{EOA}=\widehat{HOA}\)
OA chung
Do đó: ΔOEA=ΔOHA
=>\(\widehat{OEA}=\widehat{OHA}=90^0\)
=>AH là tiếp tuyến của (O)
c: Xét (O) có
BF,BH là tiếp tuyến
Do đó: BF=BH và OB là phân giác của \(\widehat{FOH}\)
OB là phân giác của góc FOH
=>\(\widehat{FOH}=2\cdot\widehat{HOB}\)
OA là phân giác của góc HOE
=>\(\widehat{HOE}=2\cdot\widehat{HOA}\)
Ta có: \(\widehat{FOH}+\widehat{HOE}=\widehat{FOE}\)
=>\(\widehat{FOE}=2\cdot\left(\widehat{HOA}+\widehat{HOB}\right)\)
=>\(\widehat{FOE}=2\cdot\widehat{AOB}=180^0\)
=>F,O,E thẳng hàng
ΔOEA=ΔOHA
=>AE=AH
Xét ΔOBA vuông tại O có OH là đường cao
nên \(AH\cdot HB=OH^2\)
mà AH=AE và BH=BF
nên \(AE\cdot BF=OH^2=R^2\)
a) Để tính độ dài dây EH, ta sử dụng định lý Pythagoras trong tam giác vuông OMH:
OH^2 = OM^2 + MH^2
Với OM = 3cm và OH = R = 5cm, ta có:
MH^2 = OH^2 - OM^2 = 5^2 - 3^2 = 25 - 9 = 16
MH = √16 = 4cm
Do đó, độ dài dây EH = 2 * MH = 2 * 4 = 8cm.
b) Để chứng minh AH là tiếp tuyến của đường tròn (O), ta sử dụng định lý tiếp tuyến - tiếp điểm:
Trong tam giác vuông OHE, ta có OM vuông góc với AE (do EH vuông góc với AO tại M). Vì vậy, theo định lý tiếp tuyến - tiếp điểm, ta có AH là tiếp tuyến của đường tròn (O).
c) Để chứng minh 3 điểm E, O, F thẳng hàng và BF.AE = R^2, ta sử dụng định lý Euclid:
Theo định lý Euclid, trong một đường tròn, các tiếp tuyến tại hai điểm cùng cung là song song. Vì vậy, ta có BF // AE.
Do đó, theo định lý Euclid, ta có BF.AE = R^2.
a: SA là tiếp tuyến của (O) với A là tiếp điểm
=>SA\(\perp\)AO tại A
=>ΔSAO vuông tại A
ΔSAO vuông tại A
=>\(AO^2+AS^2=OS^2\)
=>\(AS^2=5^2-3^2=16\)
=>SA=4(cm)
b: Xét ΔAOS vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot OS=AO\cdot AS\\OH\cdot OS=OA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\\OH=\dfrac{3^2}{5}=1,8\left(cm\right)\end{matrix}\right.\)
Xét ΔSAO vuông tại A có \(sinASO=\dfrac{OA}{OS}=\dfrac{3}{5}\)
nên \(\widehat{ASO}\simeq37^0\)
c: Xét (O) có
SA,SB là tiếp tuyến
Do đó: SA=SB
mà OA=OB
nên OS là trung trực của AB
=>OS\(\perp\)AB
mà AH\(\perp\)OS
và AH và AB có điểm chung là A
nên A,H,B thẳng hàng
d: Gọi M là trung điểm của SD
CD\(\perp\)CA
SA\(\perp\)CA
Do đó: CD//SA
Xét hình thang ASDC có
O,M lần lượt là trung điểm của AC,DS
=>OM là đường trung bình
=>OM//SA//DC
=>OM\(\perp\)CA
OM//SA
=>\(\widehat{MOS}=\widehat{OSA}\)
mà \(\widehat{OSA}=\widehat{MSO}\)
nên \(\widehat{MOS}=\widehat{MSO}\)
=>MO=MS
mà MS=MD
nên MO=SD/2
Xét ΔODS có
OM là đường trung tuyến
OM=SD/2
Do đó: ΔODS vuông tại O
=>O nằm trên đường tròn tâm M, đường kính SD
Xét (M) có
OM là bán kính
AC\(\perp\)OM tại O
Do đó: AC là tiếp tuyến của (M)