K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

Gọi O là tâm đường tròn ngoại tiếp tam giác ABC.

Ta có cái này: \(\vec{HG}=\dfrac{2}{3}\vec{HO}\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{3}-3=\dfrac{2}{3}\left(x_O-3\right)\\\dfrac{8}{3}-2=\dfrac{2}{3}\left(y_O-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_O=1\\y_O=3\end{matrix}\right.\Rightarrow O=\left(1;3\right)\)

\(d\left(O;BC\right)=\dfrac{\left|1+2.3-2\right|}{\sqrt{5}}=\sqrt{5}\)

Phương trình trung trực BC: \(2x-y+1=0\)

\(\Rightarrow\) Trung điểm M của BC có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}2x-y+1=0\\x+2y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\Rightarrow M=\left(0;1\right)\)

Lại có \(\vec{AG}=\dfrac{2}{3}\vec{AM}\Rightarrow A=\left(5;6\right)\)

\(\Rightarrow R=OA=5\)

Phương trình đường tròn ngoại tiếp:

\(\left(x-1\right)^2+\left(y-3\right)^2=25\)

3 tháng 8 2022

Cho mk hỏi là phương trình trung trực của BC tính như nào ạ

11 tháng 8 2016

bạn có viết sai pt nào k vậy?

11 tháng 8 2016

bài toán này nghĩ mãi không ra, mình làm theo cách dời hình của lớp 11 nên không thấy hợp lý lắm.
bản thân \(x_B,x_A\)khá lẻ. Để tí nữa mình sửa lại cho chẵn để dẽ tính hơn.

11 tháng 4 2016

Tọa độ điểm A, B là nghiệm của hệ phương trình :

\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\)   \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)

                                            \(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)

Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC

Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)

            \(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)

Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)

20 tháng 5 2017

a) \(G\left(-1;-\dfrac{4}{3}\right);H\left(11;-2\right);I\left(-7;-1\right)\)

b) \(\overrightarrow{IH}=3\overrightarrow{IG}\) suy ra I, G, H thẳng hàng

c) \(\left(x+7\right)^2+\left(y+1\right)^2=85\)

30 tháng 3 2017

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

26 tháng 4 2017


A C B M G

a)Theo bài ra => Tam giác ABC vuông cân ở A

M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm

=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)

Giả sử A có tọa độ (a;b)

=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)

b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC

Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC

=>phương trình đường thẳng BC:

1(x-1)-3(y+1)=0

hay x-3y-4=0

=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)

=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC

MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)

=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)

=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)

=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)

TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)

TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)

c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)

Phương trình đường tròn ngoại tiếp tam giác ABC:

(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)