Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Đường tròn (C) có tâm
Do đó:
ở trong đường tròn.
Để A là trung điểm của
là vectơ pháp tuyến của d nên d có phương trình: -1 (x+ 4) + 1.( y-2) =0
Hay x- y + 6= 0.
Đường tròn có tâm \(I\left(-3;1\right)\) bán kính \(R=\sqrt{5}\); \(\overrightarrow{AI}=\left(1;-1\right)\)
Theo tính chất của đường tròn, do A là trung điểm MN
\(\Rightarrow IA\perp MN\Rightarrow IA\perp d\) \(\Rightarrow\) đường thẳng d nhận \(\overrightarrow{AI}\) là một vtpt
Phương trình d là:
\(1\left(x+4\right)-1\left(y-2\right)=0\Leftrightarrow x-y+6=0\)
ĐÁP ÁN D
Đường tròn (C) có tâm I( -1; 3).
Do đường thẳng ∆ qua M cắt đường tròn tại hai điểm A, B sao cho M là trung điểm của AB nên I M ⊥ Δ ( quan hệ vuông góc đường kính và dây cung).
Đường thẳng ∆: đi qua M(-2; 1) và nhận M I → ( 1 ; 2 ) làm VTPT nên có phương trình là :
1. (x + 2) + 2(y – 1) = 0 hay x+ 2y = 0
Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$
Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$
$M$ là trung điểm của $AB$ nên:
\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)
\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)
Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$
Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$
Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$
$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:
$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$
Đáp án A.
Đường tròn (C) có tâm I(a;b).
Theo quan hệ vuông góc đường kính và dây cung: Nếu đường thẳng ∆ qua M cắt đường tròn tại hai điểm A, B sao cho M là trung điểm của AB thì ∆ ⊥ I M tại M.
Do đó, đường thẳng ∆: đi qua M x 0 ; y 0 và nhận M I → = a - x 0 ; b - y 0 làm VTPT.
Phương trình ∆: a - x 0 x - x 0 + b - y 0 y - y 0 = 0
Đường tròn tâm \(I\left(-3;1\right)\) bán kính \(R=\sqrt{5}\)
\(\overrightarrow{AI}=\left(1;-1\right)\)
Theo t/c đường tròn, do A là trung điểm MN \(\Rightarrow IA\perp MN\Rightarrow IA\perp d\)
\(\Rightarrow d\) nhận \(\overrightarrow{AI}\) là 1 vtpt
Phương trình d: \(1\left(x+4\right)-1\left(y-2\right)=0\Leftrightarrow x-y+6=0\)