Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (C): x^2-4x+4+y^2+6y+9=25
=>(x-2)^2+(y+3)^2=25
=>R=5; I(2;-3)
\(IM=\sqrt{\left(5-2\right)^2+\left(1+3\right)^2}=5\)
=>M thuộc (C)
vecto IM=(3;4)
Phương trình tiếp tuyến tại M là:
3(x-2)+4(y+3)=0
=>3x-6+4y+12=0
=>3x+4y+6=0
b: (d)//-3x+4y+3=0
=>(d): -3x+4y+c=0; I(2;-3)
d(I;(d))=5
=>\(\dfrac{\left|2\cdot\left(-3\right)+4\cdot\left(-3\right)+c\right|}{\sqrt{\left(-3\right)^2+4^2}}=5\)
=>|c-18|=25
=>c=43 hoặc c=-7
c: (d) vuông góc (-3x+4y+3)=0
=>(d): 4x+3y+c=0
I(2;-3)
\(d\left(I;\left(d\right)\right)=5\)
=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot3+c\right|}{5}=5\)
=>|c-1|=25
=>c=26 hoặc c=-24
a) x2 + y2 – 4x + 8y – 5 = 0
⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25
⇔ (x – 2)2 + (y + 4)2 = 25.
Vậy (C) có tâm I(2 ; –4), bán kính R = 5.
b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:
(–1 – 2)2 + (0 + 4)2 = 32 + 42 = 52= R2
⇒ A thuộc đường tròn (C)
⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A
⇒ (d’) là đường thẳng đi qua A và vuông góc với IA
⇒ (d’) nhận là một vtpt và đi qua A(–1; 0)
⇒ phương trình (d’): 3(x + 1) – 4(y - 0)= 0 hay 3x – 4y + 3 = 0.
c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).
(d) có là một vtpt; 1 VTCP là ud→(4; 3)
(Δ) ⊥ (d) ⇒ (Δ) nhận là một vtpt
⇒ (Δ): 4x + 3y + c = 0.
(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R
Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.
a.
Ta có: \(\left\{{}\begin{matrix}-4a=-2\\8b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-4\end{matrix}\right.\) \(\Rightarrow I\left(2;-4\right)\)
\(R=\sqrt{2^2+\left(-4\right)^2+5}=5\)
b.
PTTT: \(\left(C\right):\left(a-x_0\right)\left(x-x_0\right)+\left(b-y_0\right)\left(y-y_0\right)=0\)
\(\Leftrightarrow\left(2+1\right)\left(x+1\right)+\left(-4-0\right)\left(y-0\right)=0\)
\(\Leftrightarrow\left(C\right):3x-4y=-3\)
c.
Ta có: \(\Delta\perp d\Rightarrow\Delta:4x+3y+c=0\)
\(d\left(I,\Delta\right):\dfrac{\left|4\cdot2-3\cdot4+c\right|}{\sqrt{4^2+3^2}}=5\)
\(\Leftrightarrow\left|c-4\right|=25\) \(\Leftrightarrow\left[{}\begin{matrix}c=29\\c=-21\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\Delta:4x+3y+29=0\\\Delta:4x+3y-21=0\end{matrix}\right.\)
Đường tròn (C): x 2 + y 2 + 4 x − 4 y − 10 = 0 có tâm I(-2;2) và bán kính R = 3 2 .
Khoảng cách d ( I ; Δ ) = − 2 + 2 + m 1 2 + 1 2 = m 2
Để đường thẳng tiếp xúc đường tròn thì:
d ( I ; Δ ) = R ⇔ m 2 = 3 2 ⇔ m = 6 ⇔ m = ± 6
ĐÁP ÁN A
Đáp án A
- Do M thuộc d suy ra M( t; -1-t).
Nếu 2 tiếp tuyến vuông góc với nhau thì MAIB là hình vuông
(A; B là 2 tiếp điểm).
Do đó:
- Ta có :
- Do đó : 2t2+ 8= 12
Đáp án: B
(C): x 2 + y 2 - 2x + 6y + 8 = 0
⇔ (x - 1 ) 2 + (y + 3 ) 2 = 2 có I(1;-3), R = 2
Gọi d’ là tiếp tuyến của đường tròn (C) và song song với d
Vì d'//d ⇒ d': x + y + c = 0, (c ≠ 4)
d’ là tiếp tuyến của (C) nên d(I;d') = R
(C): x^2+y^2+4x-2y-4=0
=>(x+2)^2+(y-1)^2=9
=>I(-2;1); R=3
M thuộc d nên M(a;1-a)
M nằm ngoài (C) nên IM>R
=>IM^2>9
=>2a^2+4a-5>0
MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5
=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)
A,B thuộc (C)
=>Tọa độ A,B thỏa mãn phương trình:
x^2+y^2+4x-2y-4=0(2)
(1)-(2)=(a+2)x-ay+3a-5=0(3)
Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB
(E) tiếp xúc AB nên (E): R1=d(E,AB)
Chu vi của (E) lớn nhất khi R1 lớn nhất
=>d(E;AB) lớn nhất
Gọi H là hình chiếu vuông góc của E lên AB
=>d(E,Δ)=EH<=EK=căn 10/2
Dấu = xảy ra khi H trùng K
=>AB vuông góc EK
vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)
AB vuông góc EK
=>-1/2a+3/2(a+2)=0
=>a=-3
=>M(-3;4)
a: (C): x^2-4x+4+y^2+6y+9=25
=>(x-2)^2+(y+3)^2=25
=>R=5; I(2;-3)
\(IM=\sqrt{\left(5-2\right)^2+\left(1+3\right)^2}=5\)
=>M thuộc (C)
vecto IM=(3;4)
Phương trình tiếp tuyến tại M là:
3(x-2)+4(y+3)=0
=>3x-6+4y+12=0
=>3x+4y+6=0
b: (d)//-3x+4y+3=0
=>(d): -3x+4y+c=0; I(2;-3)
d(I;(d))=5
=>\(\dfrac{\left|2\cdot\left(-3\right)+4\cdot\left(-3\right)+c\right|}{\sqrt{\left(-3\right)^2+4^2}}=5\)
=>|c-18|=25
=>c=43 hoặc c=-7
c: (d) vuông góc (-3x+4y+3)=0
=>(d): 4x+3y+c=0
I(2;-3)
\(d\left(I;\left(d\right)\right)=5\)
=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot3+c\right|}{5}=5\)
=>|c-1|=25
=>c=26 hoặc c=-24
Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=\sqrt{2}\)
Gọi \(d'\perp d\Rightarrow\) phương trình d' có dạng: \(x+y+c=0\)
Do d' là tiếp tuyến (C) nên \(d\left(I;d'\right)=R\)
\(\Rightarrow\frac{\left|-2-2+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Rightarrow\left|c-4\right|=2\Rightarrow\left[{}\begin{matrix}c=6\\c=2\end{matrix}\right.\)
Vậy có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x+y+2=0\\x+y+6=0\end{matrix}\right.\)