K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 1 2022

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)

a. Đường thẳng cắt đường tròn tại 2 điểm pb khi:

\(d\left(I;d\right)< R\Leftrightarrow\dfrac{\left|\sqrt{2}-2m+1-\sqrt{2}\right|}{\sqrt{2+m^2}}< 3\)

\(\Leftrightarrow\left(2m-1\right)^2< 9\left(m^2+2\right)\)

\(\Leftrightarrow8m^2+4m+17>0\) (luôn đúng)

Vậy đường thẳng luôn cắt đường tròn tại 2 điểm pb với mọi m

b. \(S_{IAB}=\dfrac{1}{2}IA.IB.sin\widehat{AIB}=\dfrac{1}{2}R^2.sin\widehat{AIB}\le\dfrac{1}{2}R^2\) do \(sin\widehat{AIB}\le1\)

Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\Rightarrow\Delta IAB\) vuông cân tại I

\(\Rightarrow d\left(I;d\right)=\dfrac{R}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2m-1\right|}{\sqrt{m^2+2}}=\dfrac{3}{\sqrt{2}}\)

\(\Leftrightarrow m^2+8m+16=0\Rightarrow m=-4\)

25 tháng 3 2023

phần a sao ra được 8m2+4m+17 vậy ạ

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

13 tháng 1 2022

tui mới lớp 6

13 tháng 1 2022

mày dám

Kẻ IH vuông góc AB

=>H là trung điểm của AB

\(d\left(I;\left(d\right)\right)=IH=\dfrac{\left|1\cdot1+\left(-2\right)\cdot\left(-3\right)-17\right|}{\sqrt{1^2+\left(-3\right)^2}}=\dfrac{10}{\sqrt{10}}=\sqrt{10}\)

\(S_{IAB}=\dfrac{1}{2}\cdot IH\cdot AB=10\)

=>\(\dfrac{1}{2}\cdot\sqrt{10}\cdot2\cdot AI=10\)

=>\(AI=\sqrt{10}\)

\(R=\sqrt{\left(\sqrt{10}\right)^2\cdot2}=10\sqrt{2}\)

=>(C): \(\left(x-1\right)^2+\left(y+2\right)^2=200\)

21 tháng 7 2017

a) đặc C (x;y) , ta có : C \(\in\) (d) \(\Leftrightarrow x=-2y-1\)

vậy C (-2y -1 ; y ).

tam giác ABC cân tại C khi và chỉ khi

CA = CB \(\Leftrightarrow\) CA2 = CB2

\(\Leftrightarrow\) (3+ 2y + 1)2 + (- 1- y)2 = (- 1+ 2y + 1)2 + (- 2- y)2

\(\Leftrightarrow\) (4 + 2y)2 + (1 + y)2 = 4y2 + (2 + y)2

giải ra ta được y = \(\dfrac{-13}{14}\) ; x = \(-2\left(\dfrac{-13}{14}\right)-1=\dfrac{13}{7}-1=\dfrac{6}{7}\)

vậy C có tọa độ là \(\left(\dfrac{6}{7};\dfrac{-13}{14}\right)\)

b) xét điểm M (- 2t - 1 ; t) trên (d) , ta có :

\(\widehat{AMB}\) = 900 \(\Leftrightarrow\) AM2 + BM2 = AB2

\(\Leftrightarrow\) (4 + 2t)2 + (1 + t)2 + 4t2 + (2 + t)2 = 17

\(\Leftrightarrow\) 10t2 +22t + 4 = 0 \(\Leftrightarrow\) 5t2 + 11t + 2 = 0

\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{-1}{5}\\t=-2\end{matrix}\right.\)

vậy có 2 điểm thỏa mãn đề bài là M1\(\left(\dfrac{-3}{5};\dfrac{-1}{5}\right)\) và M2\(\left(3;-2\right)\)

26 tháng 3 2022

gọi H là trung điểm AB

=> \(IH=d_{\left(I,\Delta\right)}=\dfrac{\left|3\cdot2+4\cdot\left(-1\right)+3\right|}{\sqrt{3^2+4^2}}=1\)

\(S_{\Delta IAB}=2\cdot\left(\dfrac{1}{2}\cdot IH\cdot HA\right)=4\)

\(IH\cdot IA=4\Leftrightarrow1\cdot HA=4\Rightarrow HA=4\)

\(\Rightarrow R=IA=\sqrt{IH^2+HA^2}=\sqrt{1^2+4^2}=\sqrt{17}\)

\(\Rightarrow\) Phương trình đường tròn (x-2)2 +(y+1)2=17