Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ko bạn, c âm hay dương ko ảnh hưởng gì hết nên đâu cần loại
Julian Edward
Đường tròn tâm \(I\left(0;-2\right)\) bán kính \(R=4\)
Áp dụng định lý Pitago:
\(d\left(I;\Delta\right)=\sqrt{R^2-\left(\frac{2\sqrt{7}}{2}\right)^2}=3\)
\(\Delta\) song song d nên pt \(\Delta\) có dạng: \(3x-4y+c=0\)
Áp dụng công thức khoảng cách:
\(d\left(I;\Delta\right)=\frac{\left|3.0-4.\left(-2\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=3\)
\(\Leftrightarrow\left|c+8\right|=15\Rightarrow\left[{}\begin{matrix}c=7\\c=-23\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x-4y+7=0\\3x-4y-23=0\end{matrix}\right.\)
TH1: \(\Delta\) cắt Ox và Oy lần lượt tại \(A\left(0;\frac{7}{4}\right);B\left(-\frac{7}{3};0\right)\)
\(\Rightarrow S_{OAB}=\frac{1}{2}.\left|\frac{7}{4}\right|.\left|-\frac{7}{3}\right|=\frac{49}{24}\)
Th2: \(\Delta\) cắt Ox và Oy lần lượt tại \(A\left(0;-\frac{23}{4}\right);B\left(\frac{23}{3};0\right)\)
\(\Rightarrow S_{OAB}=\frac{1}{2}\left|-\frac{23}{4}\right|.\left|\frac{23}{3}\right|=\frac{529}{24}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đường tròn (C) tâm \(I\left(-1;4\right)\) bán kính \(R=5\)
Do d' song song d nên pt d' có dạng: \(3x+y+c=0\)
Áp dụng định lý Pitago ta có:
\(d\left(I;d'\right)=\sqrt{R^2-3^2}=4\)
\(\Rightarrow\frac{\left|-1.3+4+c\right|}{\sqrt{3^2+1^2}}=4\Leftrightarrow\left|c+1\right|=4\sqrt{10}\Rightarrow\left[{}\begin{matrix}c=4\sqrt{10}-1\\c=-4\sqrt{10}-1\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+y+4\sqrt{10}-1=0\\3x+y-4\sqrt{10}-1=0\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(\left(C\right):x^2+y^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)
Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)
Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)
Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)
\(\Leftrightarrow m=-1\pm\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)
2.
Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)
\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)
\(\Leftrightarrow m=-1\pm2\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)
Đường tròn (C) tâm \(I\left(0;-2\right)\) bán kính R=4
Áp dụng định lý Pitago: \(d\left(I;d_1\right)=\sqrt{R^2-\left(\frac{2\sqrt{7}}{2}\right)^2}=3\)
Do \(d_1//d\) nên pt có dạng: \(6x-8y+c=0\) (\(c\ne-46\))
\(d\left(I;d_1\right)=3\Leftrightarrow\frac{\left|0.6-8.\left(-2\right)+c\right|}{\sqrt{6^2+\left(-8\right)^2}}=3\)
\(\Leftrightarrow\left|c+16\right|=30\Rightarrow\left[{}\begin{matrix}c=14\\c=-46\left(l\right)\end{matrix}\right.\)
Phương trình \(d_1\): \(6x-8y+14=0\)
Giao điểm A của \(d_1\) với Ox: \(\left\{{}\begin{matrix}y=0\\6x-8y+14=0\end{matrix}\right.\) \(\Rightarrow A\left(-\frac{7}{3};0\right)\Rightarrow OA=\frac{7}{3}\)
Giao điểm B của \(d_1\) với Oy: \(\left\{{}\begin{matrix}x=0\\6x-8y+14=0\end{matrix}\right.\) \(\Rightarrow B\left(0;\frac{7}{4}\right)\Rightarrow OB=\frac{7}{4}\)
\(S_{OAB}=\frac{1}{2}OA.OB=\frac{49}{24}\)