Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)
a, \(\left(Cm\right)\) có tâm I(m;-2m)luôn thuộc đường thẳng (d) 2x+y=0 và có bán kính R=1
Vậy \(\left(Cm\right)\) luôn tiếp xúc với đường thẳng cố định, đó là tiếp tuyến của\(\left(Cm\right)\) song song với (d)
b,\(0< |m|< \dfrac{2}{\sqrt{5}}\)
Đường tròn (C) tâm \(I\left(-1;0\right)\) bán kính \(R=3\)
\(MN=6=2R\Rightarrow MN\) là đường kính
\(\Rightarrow\) Đường thẳng d đi qua tâm I của đường tròn
\(\Rightarrow\) Đường thẳng d là đường thẳng IA
\(\overrightarrow{IA}=\left(3;3\right)=3\left(1;1\right)\Rightarrow\) đường thẳng d nhận (1;-1) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow x-y+1=0\)
Tọa độ điểm A, B là nghiệm của hệ phương trình :
\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\) \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)
\(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)
Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC
Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)
\(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)
Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)
Gọi H là hình chiếu vuông góc của \(I\left(2;-3\right)\) lên MN \(\Rightarrow\) theo tính chất đường tròn H là trung điểm MN \(\Rightarrow HM=\frac{1}{2}MN\)
Áp dụng định lý Pitago:
\(HM=\sqrt{IM^2-IH^2}\Rightarrow MN=2\sqrt{IM^2-IH^2}=2\sqrt{R^2-IH^2}\)
\(\Rightarrow MN_{min}\) khi \(IH_{max}\)
Mặt khác do \(A\in MN\Rightarrow\Delta AIH\) vuông tại H \(\Rightarrow IH\le IA\)
\(\Rightarrow IH_{max}=IA\) khi \(H\) trùng \(A\)
\(IA=\sqrt{\left(-1\right)^2+\left(-1\right)^2}=\sqrt{2}\)
\(\Rightarrow MN_{max}=2\sqrt{R^2-IA^2}=2\sqrt{9-2}=2\sqrt{7}\)