Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
+ Ta có nhận xét sau: đường tròn đã cho có tâm I( -2; 3) và R = 7
Mà:
Suy ra A nằm ở trong (C) .
+ Gọi đường thẳng d cắt (C) theo dây cung MN.
Dây cung MN ngắn nhất khi và chỉ khi IH lớn nhất ( trong đó H là hình chiếu của I trên d)
có vectơ pháp tuyến là
Vậy d có phương trình: 5( x-3) -1( y-2) =0 hay 5x – y -13= 0
a) Đây không phải là phương trình đường tròn do có \(xy\).
b) Vì \({a^2} + {b^2} - c = {1^2} + {2^2} - 5 = 0\)nên phương trình đã cho không là phương trình tròn.
c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {4^2} - 1 = 24 > 0\)nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} = 2\sqrt 6 \).
Cách 1 : Xác định các hệ số a, b, c.
a) x2 + y2 – 2x – 2y – 2 = 0 có hệ số a = 1 ; b = 1 ; c = –2
⇒ tâm I (1; 1) và bán kính
b) 16x2 + 16y2 + 16x – 8y –11 = 0
⇒ Đường tròn có tâm , bán kính
c) x2 + y2 - 4x + 6y - 3 = 0
⇔ x2 + y2 - 2.2x - 2.(-3).y - 3 = 0
có hệ số a = 2, b = -3,c = -3
⇒ Đường tròn có tâm I(2 ; –3), bán kính
Cách 2 : Đưa về phương trình chính tắc :
a) x2 + y2 - 2x - 2y - 2 = 0
⇔ (x2 - 2x + 1) + (y2 - 2y +1) = 4
⇔(x-1)2 + (y-1)2 = 4
Vậy đường tròn có tâm I(1 ; 1) và bán kính R = 2.
b) 16x2 + 16y2 + 16x - 8y - 11 = 0
Vậy đường tròn có tâm và bán kính R = 1.
c) x2 + y2 - 4x + 6y -3 = 0
⇔ (x2 - 4x + 4) + (y2 + 6y + 9) = 4 + 9 + 3
⇔ (x - 2)2 + (y + 3)2 = 16
Vậy đường tròn có tâm I( 2 ; –3) và bán kính R = 4.
Ta có x 2 + y 2 + 4 x − 6 y − 3 = 0 ⇔ x + 2 2 + y − 3 2 = 16 nên đường tròn có tâm I(-2; 3) và bán kính R = 4.
Chú ý. Học sinh có thể áp dụng công thức tính tâm và bán kính của đường tròn khi biết phương trình tổng quát của đường tròn
ĐÁP ÁN D
Đáp án: D
Ta có:
(C): x 2 + y 2 + 4x + 6y + 3 = 0 ⇔ (x + 2 ) 2 + (y + 3 ) 2 = 10
Vậy I(-2;-3), R = 10
Đáp án: D
Ta có:
(C): x 2 + y 2 - 4x - 2y - 20 = 0 ⇔ (x - 2 ) 2 + (y - 1 ) 2 = 25
Vậy đường tròn (C) có: I(2;1), R = 5
Đáp án: D
(C): x 2 + y 2 - 4x + 6y - 12 = 0 ⇔ (x - 2 ) 2 + (y + 3 ) 2 = 25
Vậy đường tròn (C) có I(2;-3), R = 5
Đáp án D
Đường tròn C’:
x2 + y2 – 4x + 2y +1 =0
Có tâm I’( 2; -1) bán kính R’ =2 và II’= 5
Do đường tròn (C) tâm I( 6;2) tiếp xúc ngoài với (C) nên :
II’=R + R’
=> R = II’- R’ = 5- 2= 3
Phương trình đường tròn cần tìm có tâm I ( 6;2) và R= 3 :
( x- 6) 2+( y-2) 2= 9 hay x2+ y2-12x - 4y +31= 0
\(S=\pi R^2=36\pi\Rightarrow R=6\)
Phương trình đường tròn:
\(\left(x+2\right)^2+\left(y-0\right)^2=36\)
\(\Leftrightarrow x^2+y^2+4x-32=0\)