K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2017

ĐÁP ÁN B

Đường tròn (C): x 2   +   y 2   -     4 x   +   2 y   –   4 =   0  có tâm I(2; -1) và  bán kính  R ​ =    2 2 + ​ ( − 1 ) 2 + ​ 4 = 3

 Tiếp  tuyến qua M( -4; 2)  và nhận n →    ( a ;    b )  làm VTPT có phương trình :

a( x+ 4) + b (y – 2)= 0  hay ax + by + 4a – 2b = 0    (*)

Khoảng cách từ tâm I đến  tiếp tuyến bằng bán kính nên ta có:

d ( I ;    d ) ​ =     R ⇔ 2 a − b + ​ 4 a − ​​ 2 b a 2 + ​ b 2 = 3 ⇔ 6 a − 3 b a 2 + ​ b 2 = 3 ⇔ 2 a − b a 2 + ​ b 2 = 1 ⇔ 2 a − b = a 2 + ​ b 2 ⇔ 4 a 2 − 4 a b + ​ b 2 = a 2 + ​ b 2 ⇔ 3 a 2 − 4 a b = 0 ⇔ a ( ​ 3 a − 4 b ) = 0 ⇔ a = 0 3 a = 4 b

* Nếu a= 0 , chọn  b= 1 thay  vào (*) ta có phương trình tiếp tuyến là:  y – 2= 0

* Nếu 3a =  4b, chọn a = 4 thì b = 3 thay vào (*) ta có phương trình tiếp tuyến là: 

4x + 3y + 10 = 0

Vậy có 2 tiếp tuyến qua M là:  y – 2= 0 và 4x +3y + 10= 0

1. Phương trình tiếp tuyến d của đường tròn (C): \(x^2+y^2-3x-y=0\) tại điểm N(1;-1) là:A. \(d:x+3y-2=0\)                                B. \(d:x-3y+4=0\) C. \(d:x-3y-4=0\)                                D. \(d:x+3y+2=0\) 2. Cho đường tròn (C): \(x^2+y^2-4x+4y-4=0\) và điểm M(1;0). Dây cung của (C) đi qua điểm M có độ dài ngắn nhất bằng:A. \(2\sqrt{3}\)                    B. \(\sqrt{5}\)                     C. 12                      D. \(2\sqrt{7}\)3. Lập...
Đọc tiếp

1. Phương trình tiếp tuyến d của đường tròn (C): \(x^2+y^2-3x-y=0\) tại điểm N(1;-1) là:

A. \(d:x+3y-2=0\)                                B. \(d:x-3y+4=0\) 

C. \(d:x-3y-4=0\)                                D. \(d:x+3y+2=0\) 

2. Cho đường tròn (C): \(x^2+y^2-4x+4y-4=0\) và điểm M(1;0). Dây cung của (C) đi qua điểm M có độ dài ngắn nhất bằng:

A. \(2\sqrt{3}\)                    B. \(\sqrt{5}\)                     C. 12                      D. \(2\sqrt{7}\)

3. Lập phương trình chính tắc của parabol (P) biết (P) đi qua điểm M có hoành độ \(x_M=2\) và khoảng từ M đến tiêu điểm là \(\dfrac{5}{2}\) 

A. \(y^2=8x\)             B. \(y^2=4x\)             C. \(y^2=x\)                 D. \(y^2=2x\)

1
23 tháng 4 2023

1D; 2D; 3D

NV
26 tháng 3 2021

Đường tròn (C) tâm \(I\left(2;4\right)\) bán kính \(R=5\)

Điểm A thuộc (C) nên tiếp tuyến d qua A vuông góc IA

\(\Rightarrow\overrightarrow{AI}=\left(3;4\right)\Rightarrow\) đường thẳng d nhận (3;4) là 1 vtpt

Phương trình d:

\(3\left(x+1\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+3=0\)

15 tháng 5 2023

a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:

$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$

Với I là tâm đường tròn, A là điểm trên đường tròn.

Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$

Thay vào công thức ta được:

$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$

Vậy bán kính của đường tròn là $\sqrt{34}$.

Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:

$(x-2)^2 + (y-3)^2 = 34$

b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.

Ta có phương trình đường tròn chính giữa:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Tại điểm M(x,y) trên đường tròn, ta có:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:

$y - y_M = y'(x-x_M)$

Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:

$y + 5 = \frac{-(x-1)}{y+5}(x-1)$

Simplifying:

$x(y+5) + y(x-1) = 6$

Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến

16 tháng 5 2023

Toán lớp 10 không dùng đạo hàm.

(C): (x-1)^2+(y+2)^2=4

=>R=2; I(1;-2)

Vì (d)//Δ nên (d): 4x-3y+c=0

\(d\left(I;\left(d\right)\right)=2\)

=>\(\dfrac{\left|1\cdot4+\left(-2\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=2\)

=>|c+4+6|=10

=>|c+10|=10

=>c=0 hoặc c=-20

=>4x-3y=0 hoặc 4x-3y-20=0

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Đường tròn \(\left( C \right)\) có tâm \(I\left( { - 1;2} \right)\). Đường thẳng \(d\) đi qua điểm \(M\left( {0;2} \right)\) nhận \(\overrightarrow {IM}  = \left( {1;0} \right)\) làm vecto pháp tuyến có phương trình là \(x = 0\).

(d')//(d)

=>(d'): 4x-3y+c=0

(C): x^2-4x+4+y^2+6y+9-16=0

=>(x-2)^2+(y+3)^2=16

=>R=4; I(2;-3)

Theo đề, ta có: d(I;(d'))=4

=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)

=>|c+17|=4*5=20

=>c=3 hoặc c=-37

NV
9 tháng 4 2021

1.

Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi

Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)

\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:

\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)

\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)

9 tháng 4 2021

Câu 2 đâu pa

12 tháng 5 2022

ching chang chong