K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

Đường tròn đã cho có tâm  I    − 3 2   ;     5 2

Bán kính đường tròn  là:   R ​ =    − 3 2 2 + ​   5 2 2 + ​ 2 = 21 2

Độ dài  I M ​ =     − 2 + ​ 3 2 2 + ​   1 − 5 2 2 =    5 2    < ​​ R

Do đó, điểm  M nằm trong đường tròn. 

Qua M không kẻ được tiếp tuyến nào đến đường tròn.

ĐÁP ÁN A

15 tháng 5 2023

a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:

$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$

Với I là tâm đường tròn, A là điểm trên đường tròn.

Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$

Thay vào công thức ta được:

$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$

Vậy bán kính của đường tròn là $\sqrt{34}$.

Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:

$(x-2)^2 + (y-3)^2 = 34$

b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.

Ta có phương trình đường tròn chính giữa:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Tại điểm M(x,y) trên đường tròn, ta có:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:

$y - y_M = y'(x-x_M)$

Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:

$y + 5 = \frac{-(x-1)}{y+5}(x-1)$

Simplifying:

$x(y+5) + y(x-1) = 6$

Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến

16 tháng 5 2023

Toán lớp 10 không dùng đạo hàm.

15 tháng 11 2019

Đường tròn (C): x 2 + y 2 + 4 x − 2 y − 4 = 0  có tâm I(-2; 1) và bán kính R = 3.

Ta có : I M = 1 + 2 2 + 2 − 1 2 = 10 > 3  nên M nằm ngoài đường tròn.

Qua M kẻ được hai tiếp tuyến đến đường tròn.

ĐÁP ÁN C

NV
22 tháng 4 2023

Em ghi lại pt đường tròn nhé, bị lỗi rồi

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình đường tròn là: \({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 81\)

b) Bán kính đường tròn là: \(R = IM = \sqrt {{{\left( {4 - 5} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}}  = \sqrt 2 \)

Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 2\)

c) Bán kính đường tròn là: \(R = \frac{{\left| {5.1 - 12.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{16}}{{13}}\)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {\left( {\frac{{16}}{{13}}} \right)^2}\)

d) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( {1;1} \right)\)

Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( { - 4 - 1} \right)}^2}}  = \sqrt {29} \)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 29\)

e) Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\\{\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {0 - a} \right)^2} + {\left( {4 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)  b

Vậy \(I\left( {2;3} \right)\) và \(R = IA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}}  = \sqrt 5 \)

Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 5\)

4 tháng 4 2021

a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)

Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)

\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2=0\)

\(\Leftrightarrow a=2b\)

\(\Rightarrow\Delta:2x+y-5=0\)

4 tháng 4 2021

b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+4\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)

23 tháng 11 2021

A nhé

hihhihihiihihihhiihhiihihihih

1. Phương trình tiếp tuyến d của đường tròn (C): \(x^2+y^2-3x-y=0\) tại điểm N(1;-1) là:A. \(d:x+3y-2=0\)                                B. \(d:x-3y+4=0\) C. \(d:x-3y-4=0\)                                D. \(d:x+3y+2=0\) 2. Cho đường tròn (C): \(x^2+y^2-4x+4y-4=0\) và điểm M(1;0). Dây cung của (C) đi qua điểm M có độ dài ngắn nhất bằng:A. \(2\sqrt{3}\)                    B. \(\sqrt{5}\)                     C. 12                      D. \(2\sqrt{7}\)3. Lập...
Đọc tiếp

1. Phương trình tiếp tuyến d của đường tròn (C): \(x^2+y^2-3x-y=0\) tại điểm N(1;-1) là:

A. \(d:x+3y-2=0\)                                B. \(d:x-3y+4=0\) 

C. \(d:x-3y-4=0\)                                D. \(d:x+3y+2=0\) 

2. Cho đường tròn (C): \(x^2+y^2-4x+4y-4=0\) và điểm M(1;0). Dây cung của (C) đi qua điểm M có độ dài ngắn nhất bằng:

A. \(2\sqrt{3}\)                    B. \(\sqrt{5}\)                     C. 12                      D. \(2\sqrt{7}\)

3. Lập phương trình chính tắc của parabol (P) biết (P) đi qua điểm M có hoành độ \(x_M=2\) và khoảng từ M đến tiêu điểm là \(\dfrac{5}{2}\) 

A. \(y^2=8x\)             B. \(y^2=4x\)             C. \(y^2=x\)                 D. \(y^2=2x\)

1
23 tháng 4 2023

1D; 2D; 3D

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Ta có \(I\left( {2; - 3} \right)\) và \(R = \sqrt {{2^2} + {{\left( { - 3} \right)}^2} - \left( { - 12} \right)}  = 5\)

b) Ta có: \({5^2} + {1^2} - 4.5 + 6.1 - 12 = 0\). Suy ra M thuộc \(\left( C \right)\). Tiếp tuyến d của (C) tại M có vectơ pháp tuyến là \(\overrightarrow {{n_d}}  = \overrightarrow {IM}  = \left( {3;4} \right)\), đồng thời d đi qua điểm \(M\left( {5;1} \right)\).

Vậy phương trình  của d là  \(3\left( {x - 5} \right) + 4\left( {y - 1} \right) = 0 \Leftrightarrow 3x + 4y - 19 = 0\).