Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔDAB có
DO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AO)
DO là đường cao ứng với cạnh AB(gt)
Do đó: ΔDAB cân tại D(Định lí tam giác cân)
Suy ra: \(DA=DB\)(hai cạnh bên)
hay \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)
Xét (O) có
\(\widehat{AID}\) là góc nội tiếp chắn cung AD
\(\widehat{BID}\) là góc nội tiếp chắn cung BD
mà \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)(cmt)
nên \(\widehat{AID}=\widehat{BID}\)
hay ID là tia phân giác của \(\widehat{AIB}\)(đpcm)
b) Xét (O) có
\(\widehat{AIB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{AIB}=90^0\)(Hệ quả góc nội tiếp)
hay \(\widehat{FIB}=90^0\)
Xét tứ giác BIFO có
\(\widehat{FOB}\) và \(\widehat{FIB}\) là hai góc đối
\(\widehat{FOB}+\widehat{FIB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BIFO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay B,I,F,O cùng thuộc 1 đường tròn(đpcm)
a, Chú ý: K M B ^ = 90 0 và K E B ^ = 90 0 => ĐPCM
b, ∆ABE:∆AKM (g.g)
=> A E A M = A B A K
=> AE.AK = AB.AM = 3 R 2 không đổi
c, ∆OBC đều
=> B O C ⏜ = 60 0 => S = πR 2 6
a, HS tự chứng minh
b, Từ giả thiết ta có AB là đường trung trực của CE => B C ⏜ = B E ⏜ = B F ⏜ = D E ⏜
c, Sử dụng mối liên hệ cung và dây
a) Xét (O) có: AB đường kính (gt), F ϵ (O)
⇒ △ BAF vuông tại F.
⇒ BF vuông góc với AF tại F. hay BF vuông góc với KF
Mà CD vuông góc với KF tại K (gt)
⇒ CD//BF
⇒ 2 cung nhỏ CF và BD chắn 2 dây // của (O) sẽ bằng nhau.
⇒ Đcpcm
b) Ta thấy CDBF là hình thang cân ( CD//BF, CF = BD )
⇒ 2 đường chéo BC = DF. (1)
Mà △ BCE cân tại B ( vì có BH vừa là đ/c, vừa là đường trung tuyến của △)
⇒BC=BE.(2)
Từ (1) và (2) ⇒ DF = BE.
⇒ cung DF = cung BE
Cộng 2 vế trên với cung EF ta đc:
cung DE = cung BF
⇒ DE = BF
1: sđ cung DE=50 độ
=>góc DOE=50 độ
=>góc DCE=50/2=25 độ; góc BOE=90-50=40 độ
2: Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
Xét tứ giác IODE có
góc IOD+góc IED=180 độ
=>IODE là tứ giác nội tiếp