Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.
Vì MK vuông góc AB => MK // AC // BD
EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)
Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.
\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)
=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.
Ax \(\perp\) AB
By \(\perp\) AB
Suy ra: Ax // By hay AC // BD
Trong tam giác BND, ta có AC // BD
Suy ra: \(\frac{ND}{NA}=\frac{BD}{AC}\)(hệ quả định lí Ta-lét) (1)
Theo tính chất hai tiếp tuyến cắt nhau, ta có:
AC = CM và BD = DM (2)
Từ (1) và (2) suy ra: \(\frac{ND}{NA}=\frac{MD}{MC}\)
Trong tam giác ACD, ta có: \(\frac{ND}{NA}=\frac{MD}{MC}\)
Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)
Mà: AC \(\perp\) AB (vì Ax \(\perp\) AB)
Suy ra: MN \(\perp\) AB
b. Trong tam giác ACD, ta có: MN // AC
Suy ra: \(\frac{MN}{AC}=\frac{DN}{DA}\) (hệ quả định lí Ta-lét) (3)
Trong tam giác ABC, ta có: MH // AC (vì M, N, H thẳng hàng)
Suy ra: \(\frac{HN}{AC}=\frac{BN}{BC}\) (hệ quả định lí Ta-lét) (4)
Trong tam giác BDN, ta có: AC // BD
Suy ra: \(\frac{ND}{NA}=\frac{BN}{NC}\) (hệ quả định lí Ta-lét)
\(\Rightarrow\frac{ND}{\left(DN+NA\right)}=\frac{BN}{\left(BN+NC\right)}\Leftrightarrow\frac{ND}{DA}=\frac{BN}{BC}\left(5\right)\)
Từ (3), (4) và (5) suy ra: MN/AC = HN/AC => MN = HN
Theo tính chất 2 tiếp tuyến cắt nhau, ta có:
\(\left\{{}\begin{matrix}AD=MD\\BC=MC\end{matrix}\right.\Rightarrow AD+BC=MD+MC=CD\)
Vì \(\left\{{}\begin{matrix}AD=MD\\OA=OM=R\end{matrix}\right.\Rightarrow OD\) là trung trực AM
Mà tam giác OAM cân tại O nên OD cũng là p/g
\(\Rightarrow\widehat{DOM}=\dfrac{1}{2}\widehat{AOM}\)
Cmtt: \(\widehat{COM}=\dfrac{1}{2}\widehat{BOM}\)
Mà \(\widehat{AOM}+\widehat{BOM}=180^0\)
Cộng VTV ta được \(\widehat{COD}=\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\left(\widehat{AOM}+\widehat{MOB}\right)=90^0\)
Gọi I là trung điểm CD
\(\Rightarrow OI=IC=ID=\dfrac{1}{2}CD\)
Do đó I là tâm \(\left(COD\right)\)
Lại có \(\left\{{}\begin{matrix}IC=ID\\OA=OB\end{matrix}\right.\Rightarrow OI\) là đtb
\(\Rightarrow OI\text{//}AC\Rightarrow OI\bot AB\)
Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.
Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.
a: Xét hình thang AMNB có
O,I lần lượtlà trung điểm của AB,MN
nên OI là đường trung bình
=>OI//AM//NB
=>OI vuông góc với AB
=>AB là tiếp tuyến của (I;IO)
b: Gọi giao của NO và MA là E
Xét ΔOAE vuông tại A và ΔOBN vuông tại B có
OA=OB
góc AOE=góc BON
Do đo: ΔOAE=ΔOBN
=>OE=ON
Xét ΔMEN có
MO vừa là đường cao, vừa là trung tuyến
nên ΔMEN cân tại M
=>MO là phân giác của góc AMN
b) Chắc đề bài bạn gõ sai, phải là \(AM.BN=\frac{AB^2}{4}\).
Gọi giao giữa tiếp tuyến \(MN\)và \(\left(O\right)\)là \(H\).
Tam giác \(MON\)vuông tại \(O\), đường cao \(OH\)nên có:
\(MH.NH=OH^2\)
mà \(MA=MH,NB=NH\)(tính chất 2 tiếp tuyến giao nhau) , \(AB=2R\)suy ra
\(AM.BN=MH.NH=OH^2=R^2=\frac{AB^2}{4}\)