Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua
Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)
\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)
Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)
Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định
b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)
Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)
Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)
Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)
Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)
Lời giải:
1. Vì $M$ nằm trên $(P)$ nên \(y_M=x_M^2=(\frac{1}{2})^2=\frac{1}{4}\)
Gọi PTĐT (d) là $y=ax+b$
PT hoành độ giao điểm giữa (d) với (P): \(x^2-ax-b=0\)
Để (d) tiếp xúc với (P) nên PT hoành độ giao điểm chỉ có 1 nghiệm duy nhất $x_M$
\(\Rightarrow \left\{\begin{matrix} \Delta=a^2+4b=0\\ x_M^2-ax_M-b=\frac{1}{4}-\frac{1}{2}a-b=0\end{matrix}\right.\)
\(\Rightarrow a=1; b=-\frac{1}{4}\)
Vậy PTĐT là \(y=x-\frac{1}{4}\)
2. Gọi PTĐT (d1) là $y=mx+n$
Vì $A(2;3)$ thuộc (d1) nên \(3=2m+n(1)\)
(P) và (d1) tiếp xúc với nhau nên PT hoành độ giao điểm \(x^2-mx-n=0\) chỉ có 1 nghiệm duy nhất
\(\Leftrightarrow \Delta=m^2+4n=0(2)\)
Từ \((1);(2)\Rightarrow \left[\begin{matrix} m=6\rightarrow n=-9\\ m=2\rightarrow n=-1\end{matrix}\right.\)
Vậy PTĐT (d1) là \(y=6x-9\) hoặc \(y=2x-1\)