Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì (d)//(d') nên \(a=-\dfrac{2}{3}\)
Vậy: \(\left(d\right):y=-\dfrac{2}{3}x+b\)
Thay x=4 và y=-3 vào (d), ta được:
\(-\dfrac{2}{3}\cdot4+b=-3\)
\(\Leftrightarrow b=-3+\dfrac{8}{3}=-\dfrac{1}{3}\)
b: Vì (d) vuông góc với (d') nên \(\dfrac{1}{3}a=-1\)
hay a=-3
vậy: (d): y=-3x+b
Thay x=2 và y=3 vào (d), ta được:
b-6=3
hay b=9
a) ( d) : y = 3mx -1 - m
<=> y + 1 =( 3x -1 )
Ta có : \(\forall m\inℝ\) ta luôn có nghiệm : \(\hept{\begin{cases}y+1=0\\3x-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=-1\end{cases}}\)
Vậy ( d ) luôn đi qua điểm cố định ( 1 / 3 ; -1 )
b) Phương trình hoành độ g điểm giữa ( P ) và ( d )
\(\frac{1}{2}x^2=3mx-1-m\left(1\right)\)
<=> x2 -6mx + 2m + 2 =0 ( ko chắc lắm )
\(\Delta'=\left(3m\right)^2-2m-2=9m^2-2m-2\)
Để (P) tiếp xúc với (d) =>PT ( 1 ) có nghiệm kép => \(\Delta'=0\Leftrightarrow9m^2-2m-2=0\)
\(\Delta'=19\)
\(\Rightarrow\orbr{\begin{cases}m_1=\frac{1-\sqrt{19}}{9}\\m_2=\frac{1+\sqrt{19}}{9}\end{cases}}\)
Đường thẳng y = ( m -3 ).x + 5 đi qua A(-5;1)
=> A(-5;1) thuộc hàm số y = ( m - 3 ).x + 5
1 = ( m - 3).(-5) + 5
1 = -5m + 15 + 5
1 = -5m + 20
-5m = -19
m = 19/5
Vậy m = 19/5 thì y = ( m - 3)x + 5 đi qua A(-5;1)
Gọi đường thẳng cần tìm là \(y=kx+b\)
a/ \(\left\{{}\begin{matrix}-2k+b=1\\0.k+b=4\end{matrix}\right.\) \(\Rightarrow k=\frac{3}{2}\)
b/ Tọa độ giao điểm Q của d1 và d2: \(\left\{{}\begin{matrix}y=x-7\\y=-4x+3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\) \(\Rightarrow Q\left(2;-5\right)\)
\(\left\{{}\begin{matrix}-k+b=-3\\2k+b=-5\end{matrix}\right.\) \(\Rightarrow k=-\frac{2}{3}\)