Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng \(d:y = - x - 2022\) có \(a = - 1;b = - 2022\).
- Gọi \({d_1}:y = {a_1}x + {b_1}\) là đường thẳng cần tìm thứ nhất. Vì \({d_1}\) cắt \(d\) nên \(a \ne {a_1} \Rightarrow - 1 \ne {a_1}\) và \({b_1}\) tùy ý. Ta chọn \({a_1} = 5;{b_1} = 4\)
Ta có đường thẳng \({d_1}:y = 5x + 4\).
Vậy hàm số thứ nhất cần tìm là \(y = 5x + 4\)
- Gọi \({d_2}:y = {a_2}x + {b_2}\) là đường thẳng cần tìm thứ hai. Vì \({d_2}\) cắt \(d\) nên \(a \ne {a_2} \Rightarrow - 1 \ne {a_2}\) và \({b_2}\) tùy ý. Ta chọn \({a_2} = 25;{b_2} = 5\)
Ta có đường thẳng \({d_2}:y = 25x + 5\).
Vậy hàm số thứ hai cần tìm là \(y = 25x + 5\).
Gọi hàm số cần tìm có dạng là y=ax+b
Vì đồ thị hàm số y=ax+b song song với đường thẳng y=2x-1 nên ta có:
\(\left\{{}\begin{matrix}a=2\\b\ne-1\end{matrix}\right.\)
Vậy: y=2x+b
Thay x=1 vào y=3x+2, ta được:
\(y=3\cdot1+2=5\)
Thay x=1 và y=5 vào y=2x+b, ta được:
\(b+2\cdot1=5\)
=>b+2=5
=>b=3
Vậy: hàm số cần tìm là y=2x+3
a: Gọi hàm số cần tìm có dạng là y=ax+b(a<>0)
Vì đồ thị của hàm số y=ax+b song song với đường thẳng y=5x+1 nên \(\left\{{}\begin{matrix}a=5\\b\ne1\end{matrix}\right.\)
Vậy: y=5x+b
Thay x=2 và y=-3 vào y=5x+b, ta được:
\(b+5\cdot2=-3\)
=>b+10=-3
=>b=-13
Vậy: y=5x-13
b: Thay y=5 vào y=2x-1, ta được:
2x-1=5
=>2x=6
=>x=3
Thay x=3 và y=5 vào y=ax+b, ta được:
\(a\cdot3+b=5\)
=>3a+b=5(1)
Thay x=2 và y=-3 vào y=ax+b, ta được:
2*a+b=-3
=>2a+b=-3(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=5\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b-2a-b=5-\left(-3\right)\\2a+b=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=8\\b=-3-2a=-3-16=-19\end{matrix}\right.\)
vậy: y=8x-19
a) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) song song với nhau thì \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Rightarrow \left\{ \begin{array}{l}2m = 2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 2:2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\ - 5 \ne 1\end{array} \right.\left( {tm} \right)\)
Vậy \(m = 1\) thì hai đường thẳng \(y = 2mx - 5\) và \(y = 2x + 1\) song song với nhau.
b) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) cắt nhau thì \(a \ne a' \Rightarrow 2m \ne 2 \Leftrightarrow m \ne 2:2 \Leftrightarrow m \ne 1\).
Lời giải:
Vì đt $y=ax+b$ song song với $y=2x+2019$ nên $a=2$
$y=ax+b$ cắt trục tung tại điểm có tung độ $2020$, nghĩa là $(0,2020)\in (y=ax+b)$
$\Leftrightarrow 2020=a.0+b$
$\Rightarrow b=2020$
Vậy $a=2; b=2020$
ĐKXĐ: m ≠ 0 và m ≠ 3/2
a) Đồ thị hai hàm số đã cho là hai đường thẳng song song khi:
m = 3 - 2m
m + 2m = 3
3m = 3
m = 1 (nhận)
Vậy m = 1 thì đồ thị hai hàm số đã cho là hai đường thẳng song song
b) Đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau khi
m ≠ 3 - 2m
m + 2m ≠ 3
3m ≠ 3
m ≠ 1
Vậy m ≠ 0; m ≠ 1 và m ≠ 3/2 thì đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau
Đáp án đúng là D
- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a = \dfrac{1}{3}\).
- Đồ thị hàm số \(y = - \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a = - \dfrac{1}{3}\).
- Đồ thị hàm số \(y = - 3x + 2\) là đường thẳng có hệ số góc là \(a = - 3\).
Vì cả ba đường thẳng đều có hệ số góc khác nhau nên chúng cắt nhau.
- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\).
- Đồ thị hàm số \(y = - \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)
- Đồ thị hàm số \(y = - 3x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)
Do đó điểm \(A\left( {0;2} \right)\) là giao điểm của ba đồ thị hàm số.
Vậy đồ thị của các hàm số trên là các đường thẳng cắt nhau tại một điểm.
Sửa đề: (d'): y=-4x+3
a: Thay x=0 và y=0 vào y=(m+2)x+m, ta được:
\(0\left(m+2\right)+m=0\)
=>m=0
b:
Sửa đề: Để đường thẳng (d)//(d')
Để (d)//(d') thì \(\left\{{}\begin{matrix}m+2=-4\\m\ne3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\)
=>m=-6
c: Sửa đề: cắt đường thẳng d'
Để (d) cắt (d') thì \(m+2\ne-4\)
=>\(m\ne-6\)
d: Để (d) trùng với (d') thì
\(\left\{{}\begin{matrix}m+2=-4\\m=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m=3\end{matrix}\right.\)
=>\(m\in\varnothing\)
Đường thẳng \(d:y = x + 2023\) có \(a = 1;b = 2023\).
- Gọi \({d_1}:y = {a_1}x + {b_1}\) là đường thẳng cần tìm thứ nhất. Vì \({d_1}\) song song với \(d\) nên \(\left\{ \begin{array}{l}a = {a_1}\\b \ne {b_1}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}1 = {a_1}\\2023 \ne {b_1}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_1} = 1\\{b_1} \ne 2023\end{array} \right.\). Ta chọn \({b_1} = 25\)
Ta có đường thẳng \({d_1}:y = x + 25\).
Vậy hàm số thứ nhất cần tìm là \(y = x + 25\)
- Gọi \({d_2}:y = {a_2}x + {b_2}\) là đường thẳng cần tìm thứ hai. Vì \({d_2}\) song song với \(d\) nên \(\left\{ \begin{array}{l}a = {a_2}\\b \ne {b_2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}1 = {a_2}\\2023 \ne {b_2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_2} = 1\\{b_2} \ne 2023\end{array} \right.\). Ta chọn \({b_2} = 5\)
Ta có đường thẳng \({d_2}:y = x + 5\).
Vậy hàm số thứ hai cần tìm là \(y = x + 5\).