Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left\{{}\begin{matrix}a+b=3\\-3a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}a=3\\2a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}a=-2\\2a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}a.3=-1\\-2a+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=\frac{1}{3}\end{matrix}\right.\)
e/ \(\left\{{}\begin{matrix}a=-2\\a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}a=3;b\ne1\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}a=1;b\ne-5\\B\left(-2;0\right)\inđths\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1;b\ne-5\\-2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=\dfrac{1}{3}\end{matrix}\right.\)
d: Để (d)//\(y=\dfrac{-2x-1}{5}=\dfrac{-2}{5}x-\dfrac{1}{5}\) thì
\(\left\{{}\begin{matrix}m-3=\dfrac{-2}{5}\\n\ne-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{13}{5}\\n\ne-\dfrac{1}{5}\end{matrix}\right.\)
Đề không rõ ràng. Bạn coi lại đề. Những dữ kiện trên được chia theo phần hay là cả 1 cụm?
a/ \(\left\{{}\begin{matrix}a+b=3\\-3a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}a=3\\2a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}a=-2\\2a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}a.3=-1\\-2a+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=\frac{1}{3}\end{matrix}\right.\)
e/ \(\left\{{}\begin{matrix}a=-2\\a.1+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)