Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tổng quát \(\Delta\):
\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0
a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)
Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5
<=> \(5y^2-18y-8=0\)
<=>y=4 và y=\(\dfrac{-2}{5}\)
Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))
b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0
Ta có hệ phương trình:
\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)
\(\begin{cases} x=-2\\ y=1 \end{cases}\)
=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d
c. Nhận thấy, điểm A\(\notin\)\(\Delta\)
Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)
Vì M\(\in\Delta\)=> M(2y-4;y)
Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)là \(\overrightarrow{u}\)(2;1)
\(\overrightarrow{AM}\) (2y-4;y-1)
Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)
<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)
<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0
<=> 2(2y-4)+(y-1)=0
<=> 5y-9=0
<=> y= \(\dfrac{9}{5}\)
=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))
M \(\varepsilon\Delta\)=> M ( 1+ t; 2 + t)
MA2 = (t + 2)2 + t2 = 2 t2 + 4t + 4
MB2 = (t - 2)2 + (t + 1)2 = 2t2 - 2t + 5
MA2 +MB2 = 2t2 + 4t + 4 + 2t2 - 2t + 5 = 4t2 + 2t + 9 = 4t2 + 2.2t.1/2 + 1/4 + 35/4
= ( 2t + 1/2 )2 + 35/4 >= 35/4
vậy min của MA2 + MB2 = 35/4 <=> t = -1/4 => M (3/4 ; 7/4)
#mã mã#
Ta có : \(MA=5\leftrightarrow x^2+\left(y-1\right)^2=5^2\)
Thay tọa độ điểm x,y vào tham số t vào pt trên ta được :
\(\left(2+2t\right)^2+\left(3+t-1\right)^2=25\)
\(\Leftrightarrow4t^2+8t+4+4+4t+t^2=25\)
\(\Leftrightarrow5t^2+12t-17=0\rightarrow t_1=1;t_2=-\dfrac{17}{5}\)
Với \(t_1=1\), ta được điểm \(x=4;y=4\Rightarrow M_1\left(4;4\right)\)
Với \(t_2=-\dfrac{17}{5}\)ta được điểm \(x=-\dfrac{24}{5};y=-\dfrac{2}{5}\Rightarrow M_2\left(-\dfrac{24}{5};-\dfrac{2}{5}\right)\)
Do A thuộc \(\Delta\) nên tọa độ có dạng \(A\left(-2-2t;1+2t\right)\Rightarrow\overrightarrow{AM}=\left(2t+5;-2t\right)\)
\(\Rightarrow AM=\sqrt{\left(2t+5\right)^2+\left(-2t\right)^2}=\sqrt{13}\)
\(\Leftrightarrow8t^2+20t+25=13\)
\(\Leftrightarrow8t^2+20t+12=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-\dfrac{3}{2}\end{matrix}\right.\)
Có 2 điểm A thỏa mãn: \(\left[{}\begin{matrix}A\left(0;-1\right)\\A\left(1;-2\right)\end{matrix}\right.\)
b. Do B thuộc \(\Delta\) nên tọa độ có dạng \(B\left(-2-2t;1+2t\right)\Rightarrow\overrightarrow{BM}=\left(2t+5;-2t\right)\)
\(MB=\sqrt{\left(2t+5\right)^2+\left(-2t\right)^2}=\sqrt{8t^2+20t+25}=\sqrt{8\left(t+\dfrac{5}{4}\right)^2+\dfrac{25}{2}}\ge\sqrt{\dfrac{25}{2}}\)
Dấu "=" xảy ra khi \(t+\dfrac{5}{4}=0\Leftrightarrow t=-\dfrac{5}{4}\Rightarrow B\left(\dfrac{1}{2};-\dfrac{3}{2}\right)\)