Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Gọi A là tọa độ giao điểm của (d1) và (d2)
Xét phương trình hoành độ giao điểm của d1 và d2
\(x+4=\frac{-1}{2}x+\frac{7}{4}\)
\(\Leftrightarrow x+4=\frac{-2x+7}{4}\)
\(\Leftrightarrow4x+16=-2x+7\)
\(\Leftrightarrow6x=-9\)
\(\Leftrightarrow x=-\frac{3}{2}\)
Thay x = -3/2 vào ( d1 ) ta được:
y = -3/2 + 4 = 5/2
Vậy tọa độ giao điểm của 2 đường thẳng là A (-3/2 ; 5/2 )
2.
a)
x y=3/4x-3 0 -3 0 4
0 y x -3 4 y=3/4x-3 B C H
b) Áp dụng hệ thức lượng vào tam giác OBC vuông tại O
\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{4^2}+\frac{1}{\left(-3\right)^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{25}{144}\)
\(\Leftrightarrow OH^2=\frac{144}{25}\)
\(\Leftrightarrow OH=\frac{12}{5}=2,4\)
Vậy khoảng cách từ gốc tọa độ đến đường thẳng (D) là 2,4
Học tốt!!!
a: y=(2m+1)x-2
=>(2m+1)x-y-2=0
\(d\left(O;d\right)=\dfrac{\left|0\cdot\left(2m+1\right)+0\cdot\left(-1\right)-2\right|}{\sqrt{\left(2m+1\right)^2+1}}=\dfrac{2}{\sqrt{\left(2m+1\right)^2+1}}\)
Theo đề, ta có: \(\sqrt{\left(2m+1\right)^2+1}=\sqrt{2}\)
=>(2m+1)^2=1
=>m=0 hoặc m=-1
b: Tọa độ A là:
y=0 và x=2/(2m+1)
=>OA=2/|2m+1|
Tọa độ B là:
x=0 và y=-2
=>OB=2
Theo đề, ta có: 1/2*OA*OB=1/2
=>4/|2m+1|=1
=>2m+1=4 hoặc 2m+1=-4
=>m=-5/2 hoặc m=3/2
a: Để hai đường song song thì
\(\left\{{}\begin{matrix}2m^2-m=1\\m^2+m< >2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(2m+1\right)=0\\\left(m+2\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
b: Thay x=2 vào (d1), ta đc:
\(y=2+2=4\)
Vì (d3) vuông góc với (d1) nên (d3): y=-x+b
Thay x=2 và y=4 vào (d3), ta được:
b-2=4
=>b=6
Lời giải:
Gọi khoảng cách từ $O$ đến $(d)$ là $h$ thì:
$\frac{1}{h^2}=\frac{m^2-2m+2}{16m^2}$
Giải thích: Bạn tham khảo tại link sau:
Câu hỏi của Rồng Xanh - Toán lớp 9 | Học trực tuyến
Để $h$ max thì $\frac{1}{h^2}=\frac{m^2-2m+2}{16m^2}$ min
Ta thấy: $\frac{m^2-2m+2}{16m^2}=\frac{1}{16}-\frac{1}{8m}+\frac{1}{8m^2}=\frac{1}{8}(\frac{1}{m}-\frac{1}{2})^2+\frac{1}{32}\geq \frac{1}{32}$
$\Rightarrow h^2\leq 32\Leftrightarrow h\leq 4\sqrt{2}$
Tức $h_{\max}=4\sqrt{2}$
Đáp án C.
2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)
Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)
\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)
Ta có
d ∩ O x tại A (1; 0) ⇒ OA = 1
d ∩ Oy tại B (0; −1) ⇒ OB = 1
Ta có O A ⊥ O B . Gọi H là hình chiếu của O trên đường thẳng AB.
Áp dụng hệ thức trong tam giác, ta có:
1 O H 2 = 1 O A 2 + 1 O B 2 = 1 1 + 1 1 = 2 ⇒ O H = 2 2
Đáp án cần chọn là: C