K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

ta có y = x2 /2 = 2 => x= -2; 2

mà hoành độ dương nên lấy x = 2

thay x=2 vào y = k(x-1) = 2 => k = 2

 

17 tháng 4 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

đúng là học lớp 9 rồi

17 tháng 4 2022

bín bín =)..

5 tháng 6 2023

b) Phương trình hoành độ giao điểm của (P) và (d):

x² = mx - m + 1

⇔ x² - mx + m - 1 = 0

∆ = m² - 4.1.(m - 1)

= m² - 4m + 4

= (m - 2)² ≥ 0 với mọi m ∈ R

⇒ Phương trình luôn có hai nghiệm

Theo Viét ta có:

x₁ + x₂ = m (1)

x₁x₂ = m - 1 (2)

Lại có x₁ + 3x₂ = 7  (3)

Từ (1) ⇒ x₁ = m - x₂ (4)

Thay x₁ = m - x₂ vào (3) ta được:

m - x₂ + 3x₂ = 7

2x₂ = 7 - m

x₂ = (7 - m)/2

Thay x₂ = (7 - m)/2 vào (4) ta được:

x₁ = m - (7 - m)/2

= (2m - 7 + m)/2

= (3m - 7)/2

Thay x₁ = (3m - 7)/2 và x₂ = (7 - m)/2 vào (2) ta được:

[(3m - 7)/2] . [(7 - m)/2] = m - 1

⇔ 21m - 3m² - 49 + 7m = 4m - 4

⇔ 3m² - 28m + 49 + 4m - 4 = 0

⇔ 3m² - 24m + 45 = 0

∆' = 144 - 3.45 = 9 > 0

Phương trình có hai nghiệm phân biệt:

m₁ = (12 + 3)/3 = 5

m₂ = (12 - 3)/3 = 3

Vậy m = 3; m = 5 thì (P) và (d) cắt nhau tại hai điểm có hoành độ thỏa mãn x₁ + 3x₂ = 7

 

a: Thay x=0 và y=2 vào (d), ta được:

1-m=2

=>m=-1

14 tháng 5 2021

a) Khi m = 2 thì: \(\hept{\begin{cases}y=x^2\\y=2x+3\end{cases}}\)

Hoành độ giao điểm (P) và (d) là nghiệm của PT: \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}\)

Vậy tọa độ giao điểm của (P) và (d) là \(\left(-1;1\right)\) và \(\left(3;9\right)\)

b) Hoành độ giao điểm của (P) và (d) là nghiệm của PT:

\(x^2=mx+3\Leftrightarrow x^2-mx-3=0\)

Vì \(ac=1\cdot\left(-3\right)< 0\) => PT luôn có 2 nghiệm phân biệt

Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)

Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{3}{2}\Leftrightarrow\frac{-m}{3}=\frac{3}{2}\Rightarrow m=-\frac{9}{2}\)

Vậy \(m=-\frac{9}{2}\)

23 tháng 7 2019

Thay y = 4 vào phương trình đường thẳng d ta được 2x + 2 = 4 ⇔ x = 1

Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (1; 4)

Thay x = 1; y = 4 vào hàm số y = 1 − 2 m 2 x 2 ta được:

1 − 2 m 2 .1 2 = 4 ⇔ 1 – 2m = 8 ⇔ m = − 7 2

Xét phương trình hoành độ giao điểm của d và (P):

4x2 = 2x + 22x2 – x – 1 = 0

(2x + 1) (x – 1) = 0

⇔ x = 1 x = − 1 2

Vậy hoành độ giao điểm còn lại là

Đáp án cần chọn là: A

26 tháng 3 2022

1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0) 

<=> \(0=6+b\Leftrightarrow b=-6\)

2, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-\left(m-1\right)x-m+4=0\)

Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay 

\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)

a: Vì \(\left(d\right)\) đi qua \(A\left(1;2\right);B\left(-3;4\right)\) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}k+k'-3=2\\-3\left(k-3\right)+k'=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k+k'=5\\-3k+k'=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4k=10\\k+k'=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{2}{5}\\k'=\dfrac{23}{5}\end{matrix}\right.\)

12 tháng 8 2019

b) (d) cắt trục hoành tại điểm có hoành độ bằng 5 khi

0 = (2 - k).5 + k - 1 ⇒ 9 - 4k = 0 ⇒ k = 9/4