Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(d\left(O;d\right)=\dfrac{\left|-\sqrt{3}\cdot0+\left(-1\right)\cdot0+\sqrt{3}m\right|}{\sqrt{\left(-\sqrt{3}\right)^2+\left(-1\right)^2}}=\dfrac{m\sqrt{3}}{2}\)
b: Để d=3 thì \(m\sqrt{3}=6\)
=>\(m=2\sqrt{3}\)
* Giao điểm với trục Ox:
Ta có: -2x + 3 = 0
⇔ 2x = 3
⇔ x = 3/2
⇒ A(3/2; 0) là giao điểm với trục Ox
* Giao điểm với trục Oy:
x = 0 ⇔ y = 3
⇒ B(0; 3) là giao điểm với trục Oy
* Khoảng cách từ O(0; 0) tới (d):
Xét đồ thị:
Ta có:
AB² = OA² + OB² (Pytago)
= (3/2)² + 3²
= 45/4
⇒ AB = 3√5/2
Khoảng cách từ O đến (d) là đoạn thẳng OH
Ta có:
OH.AB = OA.OB
⇒ OH = OA.OB : AB
= 3/2 . 3 : (3√5/2)
= 3/√5
PT giao Ox: \(x=\dfrac{3-4m}{2m-3}\Leftrightarrow A\left(\dfrac{3-4m}{2m-3};0\right)\Leftrightarrow OA=\left|\dfrac{3-4m}{2m-3}\right|\)
PT giao Oy: \(y=4m-3\Leftrightarrow B\left(0;4m-3\right)\Leftrightarrow OB=\left|4m-3\right|\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m-3\right)^2}{\left(4m-3\right)^2}+\dfrac{1}{\left(4m-3\right)^2}\)
\(\Leftrightarrow\dfrac{1}{OH^2}=\dfrac{4m^2-12m+10}{\left(4m-3\right)^2}\\ \Leftrightarrow OH^2=\dfrac{16m^2-24m+9}{4m^2-12m+10}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow4m^2t-12mt+10t=16m^2-24m+9\\ \Leftrightarrow m^2\left(4t-16\right)-m\left(12t-24\right)+10t-9=0\)
Coi đây là PT bậc 2 ẩn m, PT có nghiệm
\(\Leftrightarrow\Delta=\left(12t-24\right)^2-4\left(10t-9\right)\left(4t-16\right)\ge0\\ \Leftrightarrow144t^2-576t+576-160x^2+784x-576\ge0\\ \Leftrightarrow-t^2+13t\ge0\\ \Leftrightarrow0\le t\le13\\ \Leftrightarrow OH\le\sqrt{13}\)
Dấu \("="\Leftrightarrow\) PT có nghiệm kép hay \(m=\dfrac{12t-24}{8t-32}=\dfrac{3t-6}{2t-8}=\dfrac{39-6}{26-8}=\dfrac{33}{18}\)
Sửa: \(\left(d\right):y=\left(m-2\right)x+m+1\)
PT giao (d) với Ox \(y=0\Leftrightarrow x\left(m-2\right)=-m-1\Leftrightarrow x=\dfrac{m+1}{2-m}\Leftrightarrow A\left(\dfrac{m+1}{2-m};0\right)\Leftrightarrow OA=\left|\dfrac{m+1}{2-m}\right|\)
PT giao (d) với Oy \(x=0\Leftrightarrow y=m+1\Leftrightarrow B\left(0;m+1\right)\Leftrightarrow OB=\left|m+1\right|\)
Áp dụng HTL: \(\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{\left(\sqrt{2}\right)^2}=\dfrac{1}{2}\)
\(\Leftrightarrow\left|\dfrac{2-m}{m+1}\right|^2+\dfrac{1}{\left|m+1\right|^2}=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{\left(2-m\right)^2}{\left(m+1\right)^2}+\dfrac{1}{\left(m+1\right)^2}=\dfrac{1}{2}\\ \Leftrightarrow2\left(2-m\right)^2+2=\left(m+1\right)^2\\ \Leftrightarrow8-8m+2m^2+2=m^2+2m+1\\ \Leftrightarrow m^2-10m+9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\) thỏa mãn đề bài
\(a,\) Pt hoành độ giao điểm
\(x=0\\ \Leftrightarrow y=-2\cdot0+3=3\\ \Leftrightarrow A\left(0;3\right)\)
Pt tung độ giao điểm
\(y=0\\ \Leftrightarrow0=-2x+3\Leftrightarrow x=\dfrac{3}{2}\\ \Leftrightarrow B\left(\dfrac{3}{2};0\right)\)
\(A\left(x_0;2x_0\right)\Rightarrow OA=\sqrt{x_0^2+4x_0^2}=3\sqrt{5}\)
\(\Leftrightarrow5x_0^2=45\Rightarrow x_0^2=9\)
\(\Rightarrow x_0=-3\Rightarrow y_0=-6\)