Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x=2+t\\y=1-3t\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=6+3t\\y=1-3t\end{matrix}\right.\) \(\Rightarrow3x+y=7\Rightarrow3x+y-7=0\)
Vậy (d) có pt tổng quát là: \(3x+y-7=0\)
A và B nằm cùng phía đối với d khi và chỉ khi:
\(\left(3.1+2-7\right)\left(3.\left(-2\right)+m-7\right)>0\)
\(\Leftrightarrow-2\left(m-13\right)>0\)
\(\Rightarrow m< 13\)
a. Md1= (2;1)
Md2 = (-1;3)
b. Gọi d là đường thẳng đi qua M
- Viết PTTS của d ⊥ d1:
Ta có:
M(2;1)
Do d1⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)
--> VTCP ud = (3;1)
Vậy PTTS của d:
\(\left\{{}\begin{matrix}x=2+3t\\y=1+t\end{matrix}\right.\)
- Viết PTTQ của d ⊥ d1:
Ta có:
M(2;1)
Do d1 ⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)
Vậy PTTQ của d:
-1(x - 2) + 3(y - 1) = 0
<=> -x + 2 + 3y - 3 = 0
<=> -x + 3y - 1 = 0
- Viết PTTS của d ⊥ d2:
Ta có:
M(-1;3)
Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)
--> VTCP ud = (2;1)
Vậy PTTS của d:
\(\left\{{}\begin{matrix}x=-1+2t\\y=3+t\end{matrix}\right.\)
Viết PTTQ của d ⊥ d2:
M(-1;3)
Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)
Vậy PTTQ của d:
-1(x + 1) + 2(y - 3) = 0
<=> -x - 1 + 2y - 6 = 0
<=> -x + 2y - 7 = 0
Gọi giao điểm là A, thay tọa độ tham số d1 vào d2:
\(t-2\left(2-t\right)+m=0\Leftrightarrow3t+m-4=0\Rightarrow t=\dfrac{-m+4}{3}\)
\(\Rightarrow A\left(\dfrac{-m+4}{3};\dfrac{m+2}{3}\right)\)
\(\Rightarrow OA=\sqrt{\left(\dfrac{-m+4}{3}\right)^2+\left(\dfrac{m+2}{3}\right)^2}=2\)
\(\Leftrightarrow m^2-2m-8=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)
b. Bạn không đưa 4 đáp án thì không ai trả lời được câu hỏi này. Có vô số đường thẳng cách đều 2 điểm, chia làm 2 loại: các đường thẳng song song với AB và các đường thẳng đi qua trung điểm của AB
c. Tương tự câu b, do 3 điểm ABC thẳng hàng nên có vô số đường thẳng thỏa mãn, là các đường thẳng song song với AB
b)
A. x-y+2=0
B. x+2y=0
C.2x-2y+10=0
D. x-y+100=0
c)
A. x-3y+4=0
B. -x+y+10=0
C. x+y=0
D. 5x-y+1=0
\(\Delta_1\) có 1 vtcp là \(\left(m^2+1;-m\right)\)
\(\Delta_2\) có 1 vtcp là \(\left(-3;-4m\right)\)
Hai đường thẳng vuông góc khi và chỉ khi tích vô hướng 2 vtcp bằng 0
\(\Leftrightarrow-3\left(m^2+1\right)+4m^2=0\)
\(\Leftrightarrow m^2=3\Rightarrow m=\pm\sqrt{3}\)
\(\left\{{}\begin{matrix}x+y=2\\xy\left(x+y\right)=2m^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=m^2\end{matrix}\right.\)
Theo Viet đảo; x và y là nghiệm của: \(t^2-2t+m^2=0\) (1)
Để hệ có nghiệm \(\Leftrightarrow\) (1) có nghiệm
\(\Leftrightarrow\Delta'=1-m^2\ge0\Rightarrow-1\le m\le1\)
\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình AB: \(1\left(x+3\right)+2\left(y-5\right)=0\Leftrightarrow x+2y-7=0\)
Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-7=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{9}{5};\frac{13}{5}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(-\frac{24}{5};\frac{12}{5}\right)=6\left(-\frac{4}{5};\frac{2}{5}\right)\\\overrightarrow{IB}=\left(-\frac{4}{5};\frac{2}{5}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{IA}=6\overrightarrow{IB}\Rightarrow\frac{IA}{IB}=6\)
Lời giải:
Viết lại đt $(d_1)$:
$x+2y=m+1-6t+6t$
$\Leftrightarrow x+2y=m+1$
Ta thấy $M(-2,2)\in (d_2)$. Nếu $(d_2)\equiv (d_1)$ thì:
$M(-2,2)\in (d_1)$
$\Leftrightarrow -2+2.2=m+1$
$\Leftrightarrow m=1$
Thay giá trị $m$ vừa tìm được vào 2 ptđt ban đầu thì:
$(d_1)$: $x+2y=2$
$(d_2)$: \(\left\{\begin{matrix} x=-2-2t\\ y=2+t\end{matrix}\right.\)
$\Rightarrow x+2y=-2-2t+2(2+t)=2$ (trùng với $(d_1)$)
Vậy $m=1$
Chuyển pt d về dạng tổng quát: \(3x+y-7=0\)
Thay tọa độ điểm A vào: \(\Rightarrow3.1+2-7=-1< 0\)
Thay tọa độ điểm B vào, để 2 điểm nằm cùng phía so với d thì:
\(-6+m-7< 0\Rightarrow m< 13\)