Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Rightarrow d:4x+5y+14=0\)
\(d':4x+5y+14=0\)
Ta có: \(\dfrac{4}{4}=\dfrac{5}{5}=\dfrac{14}{14}\) \(\Rightarrow d\equiv d'\)
b) \(\Rightarrow d:x+2y-5=0\)
Ta có: \(\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{-5}{-10}\) \(\Rightarrow d\equiv d'\)
c) Ta có: \(\dfrac{1}{2}\ne\dfrac{1}{1}\) \(\Rightarrow d\) cắt \(d'\)
a/ \(\overrightarrow{u}=\left(-4;3\right)\Rightarrow\overrightarrow{n}=\left(3;4\right)\)
\(\Rightarrow\left(d\right):3\left(x-1\right)+4\left(y-2\right)=0\)
\(\left(d\right):3x+4y-11=0\)
b/ \(\left(x_O-x_M;y_O-y_M\right)=\left(4;-5\right)\)
Ủa đề bài kiểu gì vậy? Thế này là tìm được M rồi mà, cho M thuộc (d) làm gì? :<
\(M\in d\Rightarrow M\left(1-2t;t\right)\)
\(\overrightarrow{AM}=\left(1-2t;t-1\right)\)
Ta có: \(AM=\sqrt{10}\Leftrightarrow AM^2=10\\ \Leftrightarrow\left(1-2t\right)^2+\left(t-1\right)^2=10\Leftrightarrow5t^2-6t-8=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=\frac{-4}{5}\end{matrix}\right. \)
\(t=2\Rightarrow M\left(-3;2\right)\\ t=\frac{-4}{5}\Rightarrow M\left(\frac{13}{5};\frac{-4}{5}\right)\)
\(A\in d\Rightarrow A\left(-2+t;-1+3t\right)\)
\(AB=\sqrt{10}\Leftrightarrow\sqrt{\left(-2+t-2\right)^2+\left(-1+3t-1\right)^2}=\sqrt{10}\)
\(\Leftrightarrow\left(t-4\right)^2+\left(3t-2\right)^2=10\\ \Leftrightarrow t^2-8t+16+9t^2-12t+4=10\\ \Leftrightarrow10t^2-20t+20=10\\ \Leftrightarrow t^2-2t+1=0\Leftrightarrow\left(t-1\right)^2=0\Leftrightarrow t=1\)
\(\Rightarrow A\left(-1;2\right)\).