K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)

=>(d') có VTPT là (-1;1)

Phương trình (d') là;

-1(x-3)+1(y-1)=0

=>-x+3+y-1=0

=>-x+y+2=0

2: (d) có VTCP là (-1;1)

=>VTPT là (1;1)

Phương trình (d) là:

1(x+2)+1(y-1)=0

=>x+y+1=0

Tọa độ H là;

x+y+1=0 và -x+y+2=0

=>x=1/2 và y=-3/2

 

28 tháng 4 2020

a/ \(\overrightarrow{u}=\left(-4;3\right)\Rightarrow\overrightarrow{n}=\left(3;4\right)\)

\(\Rightarrow\left(d\right):3\left(x-1\right)+4\left(y-2\right)=0\)

\(\left(d\right):3x+4y-11=0\)

b/ \(\left(x_O-x_M;y_O-y_M\right)=\left(4;-5\right)\)

Ủa đề bài kiểu gì vậy? Thế này là tìm được M rồi mà, cho M thuộc (d) làm gì? :<

NV
14 tháng 4 2022

Giao điểm của (d) và (C) thỏa mãn:

\(\left(2+t\right)^2+\left(-1+3t\right)^2-2\left(2+t\right)-1=0\)

\(\Leftrightarrow10t^2-4t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=\dfrac{2}{5}\end{matrix}\right.\)

Vậy (d) và (C) cắt nhau tại 2 điểm có tọa độ là: \(\left[{}\begin{matrix}\left(2;-1\right)\\\left(\dfrac{12}{5};\dfrac{1}{5}\right)\end{matrix}\right.\)

NV
8 tháng 2 2020

Gọi \(I\left(\frac{3}{2};-1\right)\) là trung điểm AB

\(\overrightarrow{AB}=\left(1;-4\right)\Rightarrow\) trung trực đường thẳng AB nhận \(\left(1;-4\right)\) là 1 vtpt

Phương trình trung trực d' của AB:

\(1\left(x-\frac{3}{2}\right)-4\left(y+1\right)=0\Leftrightarrow2x-8y-11=0\)

M là giao điểm của d và d'

\(\Rightarrow\) Tọa độ M là nghiệm:

\(2\left(1+2t\right)-8\left(-3-5t\right)-11=0\) \(\Rightarrow t=-\frac{15}{44}\)

\(\Rightarrow M\left(\frac{7}{22};-\frac{57}{44}\right)\)

3 tháng 2 2021

\(A\in d\Rightarrow A\left(-2+t;-1+3t\right)\)

\(AB=\sqrt{10}\Leftrightarrow\sqrt{\left(-2+t-2\right)^2+\left(-1+3t-1\right)^2}=\sqrt{10}\)

\(\Leftrightarrow\left(t-4\right)^2+\left(3t-2\right)^2=10\\ \Leftrightarrow t^2-8t+16+9t^2-12t+4=10\\ \Leftrightarrow10t^2-20t+20=10\\ \Leftrightarrow t^2-2t+1=0\Leftrightarrow\left(t-1\right)^2=0\Leftrightarrow t=1\)

\(\Rightarrow A\left(-1;2\right)\).