Cho đường thẳng d có phương trình tham số...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Ta có : \(MA=5\leftrightarrow x^2+\left(y-1\right)^2=5^2\)

Thay tọa độ điểm x,y vào tham số t vào pt trên ta được :

\(\left(2+2t\right)^2+\left(3+t-1\right)^2=25\)

\(\Leftrightarrow4t^2+8t+4+4+4t+t^2=25\)

\(\Leftrightarrow5t^2+12t-17=0\rightarrow t_1=1;t_2=-\dfrac{17}{5}\)

Với \(t_1=1\), ta được điểm \(x=4;y=4\Rightarrow M_1\left(4;4\right)\)

Với \(t_2=-\dfrac{17}{5}\)ta được điểm \(x=-\dfrac{24}{5};y=-\dfrac{2}{5}\Rightarrow M_2\left(-\dfrac{24}{5};-\dfrac{2}{5}\right)\)

31 tháng 5 2017

a) Đường tròn (T) có tâm là điểm (2 ; 1) và có bán kính bằng \(\sqrt 2\)

b) \(-3\le m\le1\)

c) Có hai tiếp tuyến với (T) thỏa mãn đề bài là :

\({\Delta _1}:x + y - 1 = 0\)

\({\Delta _2}:x + y - 5 = 0\)

a: Khi t=1 thì \(\left\{{}\begin{matrix}x=2-1=1\\y=3+1=4\end{matrix}\right.\)

Khi t=2 thì \(\left\{{}\begin{matrix}x=2-2=0\\y=3+2=5\end{matrix}\right.\)

b: Khi x=9 và y=-1 thì \(\left\{{}\begin{matrix}2-t=9\\3+t=-1\end{matrix}\right.\Leftrightarrow t\in\varnothing\)

Khi x=0 và y=8 thì \(\left\{{}\begin{matrix}2-t=0\\3+t=8\end{matrix}\right.\Leftrightarrow t\in\varnothing\)

Khi x=3/2 và y=5 thì \(\left\{{}\begin{matrix}2-t=\dfrac{3}{2}\\3+t=5\end{matrix}\right.\Leftrightarrow t\in\varnothing\)

d: Vì (d) có phương trình tham số là \(\left\{{}\begin{matrix}x=2-t\\y=3+t\end{matrix}\right.\)

nên (d)đi qua (2;3)và có vecto chỉ phương là (-1;1)

=>VTPT là (1;1)

Phương trình tổng quát là 1(x-2)+y-3=0

=>x+y-3=0

Khi x=0 thì y-3=0

hay y=3

Khi y=0 thì x-3=0

hay x=3

18 tháng 7 2017

Phương trình tổng quát \(\Delta\):

\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0

a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)

Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5

<=> \(5y^2-18y-8=0\)

<=>y=4 và y=\(\dfrac{-2}{5}\)

Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))

b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0

Ta có hệ phương trình:

\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)

\(\begin{cases} x=-2\\ y=1 \end{cases}\)

=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d

c. Nhận thấy, điểm A\(\notin\)\(\Delta\)

Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)

Vì M\(\in\Delta\)=> M(2y-4;y)

Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)\(\overrightarrow{u}\)(2;1)

\(\overrightarrow{AM}\) (2y-4;y-1)

Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)

<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)

<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0

<=> 2(2y-4)+(y-1)=0

<=> 5y-9=0

<=> y= \(\dfrac{9}{5}\)

=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))

23 tháng 9 2017

a) ta có :

\(\Delta'=1^2-\left(-1-m\right)\left(m^2-1\right)=1-\left(-m^2+1-m^3+m\right)=1+m^2-1+m^3-m=m^3+m^2-m=m\left(m^2+m-1\right)\)để phương trình có nghiệm thì \(\Delta\ge0\)

hay \(m\left(m^2+m-1\right)\ge0\)

=> \(\left\{{}\begin{matrix}m\ge0\\m^2+m-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m+\dfrac{1}{2}\ge\\m+\dfrac{1}{2}\le-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\dfrac{\sqrt{5}}{2}}\)

Trong mặt phẳng Oxy, cho A(-3; 2), B(1; 4), C(0; 5) và đường thẳng (Δ ): -3x+4y-1=0 a) Viết phương trình tham số các cạnh AB, AC , BCcủa tam giác ABC b) Viết PT tham số đường thẳng d qua A và có véc tơ pháp tuyến \(\overset{\rightarrow}{n}\)( -4;1) c) Viết PT tổng quát đường thẳng d qua B và có véc tơ chỉ phương \(\overrightarrow{u}\)( -4;1) d) Viết phương trình tổng quát các cạnh AB, AC của tam giác ABC e) Viết...
Đọc tiếp

Trong mặt phẳng Oxy, cho A(-3; 2), B(1; 4), C(0; 5) và đường thẳng (Δ ): -3x+4y-1=0
a) Viết phương trình tham số các cạnh AB, AC , BCcủa tam giác ABC
b) Viết PT tham số đường thẳng d qua A và có véc tơ pháp tuyến \(\overset{\rightarrow}{n}\)( -4;1)
c) Viết PT tổng quát đường thẳng d qua B và có véc tơ chỉ phương \(\overrightarrow{u}\)( -4;1)
d) Viết phương trình tổng quát các cạnh AB, AC của tam giác ABC
e) Viết phương trình đường thẳng d qua A và song song với Δ
f) Viết phương trình đường thẳng d’ qua C và vuông góc với đường thẳng Δ
g) Viết phương trình đường tròn (C) tâm B và đi qua điểm C.
h) Viết phương trình đường tròn (C) đường kính AB.
i) Viết phương trình đường tròn (C) đi qua 3 điểm A, B

k) Cho đường thẳng d:\(\left\{{}\begin{matrix}x=2+2t\\y=3+2t\end{matrix}\right.\) Tìm điểm N∈ d sao cho khoảng cách từ N đến đường thẳng \(\Delta\) bằng 3

l) Cho 3 đường thẳng d\(_1\) :x+y+3=0 . d\(_2\) : x-y-4=0 , d\(_3\):x-2y = 0 Tìm điểm M ∈ d\(_3\) để
d (M; d\(_1\)) = 2d (M; d\(_2\))

0
NV
1 tháng 6 2020

Gọi pt d có dạng \(y=ax+b\)

\(f\left(x\right)-g\left(x\right)\le0\Leftrightarrow x^2-ax-b\le0\)

Do nghiệm của BPT là \(\left[1;3\right]\Rightarrow f\left(x\right)-g\left(x\right)=0\) có 2 nghiệm pb \(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Theo Viet đảo: \(\left\{{}\begin{matrix}a=3+1\\-b=3.1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\) \(\Rightarrow y=4x-3\Leftrightarrow4x-y-3=0\)

\(\Rightarrow A\left(1;1\right)\) ; \(B\left(3;9\right)\)

Diện tích tam giác ABM lớn nhất khi \(d\left(M;d\right)\) lớn nhất

\(d\left(M;d\right)=\frac{\left|4m-m^2-3\right|}{\sqrt{17}}=\frac{\left|m^2-4m+3\right|}{\sqrt{17}}=\frac{\left|\left(m-2\right)^2-1\right|}{\sqrt{17}}\le\frac{1}{\sqrt{17}}\)

Dấu "=" xảy ra khi \(m=2\)

10 tháng 2 2022

a) \(B\subset A\)

\(\Rightarrow\left(-4;5\right)\subset\left(2m-1;m+3\right)\)

\(\Rightarrow2m-1\le-4< 5\le m+3\)

\(\Rightarrow\hept{\begin{cases}2m-1\ge4\\5\le m+3\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}m< -\frac{3}{2}\\m\ge2\end{cases}}\left(ktm\right)\)

\(\Rightarrow m\in\varnothing\)

b) \(A\text{∩ }B=\varnothing\)

\(\Rightarrow\orbr{\begin{cases}m+3< -4\\5< 2m-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}m< -7\\m>3\end{cases}}\)

Vậy \(m< -7;m>3\)

10 tháng 2 2022
M<-7;m>3 nha HT @@@@@@@@@@@@@@
2 tháng 4 2016

Xét điểm \(B\left(3+t;-2t\right)\in d_2\). Lấy điểm A sao cho M(1;2) là trung điểm của AB. Khi đó \(A\left(1-t;4+2t\right)\) và 

\(A\in d_1\Leftrightarrow\frac{1-t-3}{3}=\frac{4+2t}{-1}\Leftrightarrow t=-2\)

Do đó B(1;4) và đường thẳng \(\Delta\) cần tìm có phương trình x=1