Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét điểm \(B\left(3+t;-2t\right)\in d_2\). Lấy điểm A sao cho M(1;2) là trung điểm của AB. Khi đó \(A\left(1-t;4+2t\right)\) và
\(A\in d_1\Leftrightarrow\frac{1-t-3}{3}=\frac{4+2t}{-1}\Leftrightarrow t=-2\)
Do đó B(1;4) và đường thẳng \(\Delta\) cần tìm có phương trình x=1
Ta có \(M\in\Delta_1\Rightarrow M\left(2t+3;t\right)\)
.
Khoảng cách từ M đến đường thẳng \(\Delta_2\)bằng \(\dfrac{1}{\sqrt{2}}\)
\(\Rightarrow\)\(d\left(M,\Delta_2\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\dfrac{\left|2t+3+t+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left|3t+4\right|=1\)\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=\dfrac{-5}{3}\end{matrix}\right.\)
* \(t=-1\)
\(\Rightarrow M\left(1;-1\right)\)
*\(t=\dfrac{-5}{3}\)
\(\Rightarrow M\left(\dfrac{-1}{3};\dfrac{-5}{3}\right)\)
a) Xét hệ \(\left\{{}\begin{matrix}4x-10y+1=0\\x+y+2=0\end{matrix}\right.\)
D = 4.1 = 10.1 = -6 ≠ 0
Vậy d1 và d2 cắt nhau
b) Tương tự, ta có: d1 :\(12x-6y+10=0\) ;
d2= \(2x-y-7=0\)
D = 12 . (-1) - (-6).2 = -12 + 12 = 0
Dx = (-6) . (-7) - (-1). 10 = 42 + 10 = 52 ≠ 0
Vậy d1 // d2
c) Tương tự, ta có d1: \(8x+10y-12=0\)
d2:\(4x+5y-6=0\)
D = 8 . 5 - 4 . 10 = 0
Dx = 10. (-6) - (-12) . 5 = 0
Dy = (-12) . 4 - (-6) . 8 = 0
Vậy d1 trùng d2.
Gọi Z(a;b) là giao điểm của d1 và d2 (a,b khác 0)
a,b là nghiệm của
\(\left\{{}\begin{matrix}y=\left(m+1\right)x+2\\y=2x+1\end{matrix}\right.\)
Thay \(y=\left(m+1\right)x+2\) vào \(y=2x+1\) được \(x=\frac{1}{1-m}=a\)
Thay \(x=\)\(\frac{1}{1-m}\) vào \(y=2x+1\) được \(y=\frac{3-m}{1-m}=b\)
\(ab< 0\Leftrightarrow\frac{1}{1-m}.\frac{3-m}{1-m}< 0\Leftrightarrow m>3\)
Giả sử \(C\left(c;-c;-3\right)\in d_1\)
\(D\left(5d+16;d\right)\in d_2\)
\(\Rightarrow\overrightarrow{CD}=\left(5d+16-c;d+c+3\right)\)
ABCD là hình bình hành \(\Rightarrow\overrightarrow{CD}=\overrightarrow{BA}=\left(3;4\right)\)
\(\Rightarrow\begin{cases}5d+16-c=3\\d+c+3=4\end{cases}\)\(\Leftrightarrow\begin{cases}5d-c=-13\\d+c=1\end{cases}\)
\(\Leftrightarrow\begin{cases}d=-2\\c=3\end{cases}\)
\(\Rightarrow C\left(3;-6\right);D\left(6;-2\right)\)
Ta có : \(\overrightarrow{BA}=\left(3;4\right);\overrightarrow{BC}=\left(4;-3\right)\) không cùng phương => A, B, C, D không thẳng hàng => ABCD là hình bình hàng
Vậy \(C\left(3;-6\right);D\left(6;-2\right)\)
Lời giải:
$M\in d_1$ nên gọi tọa độ của $M$ là $(2a+3,a)$
Khoảng cách từ $M$ đến $(d_2)$ là:\(\frac{|2a+3+a+1|}{\sqrt{1^2+1^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow |3a+4|=1\Leftrightarrow 3a+4=\pm 1\)
\(\Leftrightarrow a=-1; a=\frac{-5}{3}\)
Thay vào ta có tọa độ của điểm $M$
Lấy \(M\in d_1\Rightarrow M\left(2y+3;y\right)\)
Ta có: \(d\left(M;d_2\right)=\dfrac{1}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2y+3+y+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\dfrac{\left|3y+4\right|}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow\left|3y+4\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}3y+4=1\\3y+4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\dfrac{5}{3}\end{matrix}\right.\)
\(y=1\Rightarrow M\left(5;1\right)\)
\(y=-\dfrac{5}{3}\Rightarrow M\left(-\dfrac{1}{3};-\dfrac{5}{3}\right)\)