K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

Chào ng đẹp

a) ANC=90 chắn nữa dg tròn =>ANC+CAN+CAB+ABC=180

=>ANC+CAN+ACN+ACB+CAB+ABC=360

=>ACN+ACB=180

=>b,c,n THẲNG HÀNG

Chứng minh tương tự A,N,D...

15 tháng 7 2021

a) Trong (O) có AB là dây cung không đi qua O và I là trung điểm AB

\(\Rightarrow OI\bot AB\Rightarrow\angle MIO=90\Rightarrow\angle MIO+\angle MCO=90+90=180\)

\(\Rightarrow MIOC\) nội tiếp

b) Vì MC,MD là tiếp tuyến \(\Rightarrow\Delta MCD\) cân tại M có MO là phân giác \(\angle CMD\) \(\Rightarrow MO\bot CD\) mà \(EF\parallel CD\) \(\Rightarrow EF\bot MO\)

tam giác MOE vuông tại O có đường cao OC \(\Rightarrow CM.CE=OC^2\)

tam giác MOC vuông tại C có đường cao HC \(\Rightarrow OH.OM=OC^2\)

\(\Rightarrow OH.OM=CM.CE\)

Vì H là trung điểm CD (\(\Delta MCD\) cân tại M) và \(EF\parallel CD\) 

\(\Rightarrow O\) là trung điểm EF

 \(\Rightarrow S_{MEF}=2S_{MOE}=2.\dfrac{1}{2}.OC.ME=OC.\left(CM+CE\right)\)

\(\ge R.\sqrt{CM.CE}=R.2\sqrt{OC^2}=R.2OC=2R^2\)

\(\Rightarrow S_{MEF_{min}}=2R^2\) khi \(CM=CE=R\left(CM.CE=R^2\right)\)

\(\Rightarrow OM=\sqrt{R^2+R^2}=\sqrt{2}R\)

Vậy M nằm trên d sao cho \(OM=\sqrt{2}R\) thì diện tích tam giác MEF nhỏ nhất \(\left(=2R^2\right)\)

undefined

26 tháng 11 2023

a: O là trung điểm của AB

=>\(OA=OB=\dfrac{AB}{2}=4,8\left(cm\right)\)

ΔOBD vuông tại B

=>\(OD^2=OB^2+BD^2\)

=>\(OD^2=4,8^2+6,4^2=64\)

=>OD=8(cm)

Xét ΔDON vuông tại O có OB là đường cao

nên \(OB^2=BN\cdot BD\)

=>\(BN\cdot6,4=4,8^2\)

=>BN=3,6(cm)

DN=DB+BN

=3,6+6,4

=10(cm)

Xét ΔODN vuông tại O có \(DN^2=OD^2+ON^2\)

=>\(ON^2+8^2=10^2\)

=>\(ON^2=36\)

=>ON=6(cm)

b: Xét (O) có

DM,DB là tiếp tuyến

Do đó; OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOB}+\widehat{MOA}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOD}+\widehat{MOA}=2\cdot90^0\)

=>\(\widehat{MOA}=2\cdot90^0-2\cdot\widehat{MOD}=2\left(90^0-\widehat{MOD}\right)=2\cdot\widehat{COM}\)

=>OC là phân giác của góc MOA

Xét ΔCAO và ΔCMO có

OA=OM

\(\widehat{COA}=\widehat{COM}\)

OC chung

Do đó: ΔCAO=ΔCMO

=>\(\widehat{CAO}=\widehat{CMO}=90^0\)

=>AC\(\perp\)AB

mà BD\(\perp\)AB

nên BD//AC

Xét ΔOAC vuông tại A và ΔOBN vuông tại B có

OA=OB

\(\widehat{AOC}=\widehat{BON}\)

Do đó: ΔOAC=ΔOBN

=>OC=ON

=>O là trung điểm của CN

Xét ΔDCN có

DO là đường cao

DO là đường trung tuyến

Do đó;ΔDCN cân tại D

=>DC=DN

c: Vì \(\widehat{CAO}=90^0\) và OA là bán kính của (O)

nên CA là tiếp tuyến của (O)

1: góc OMP=góc ONP=90 độ

=>OMNP nội tiếp

2: Xet ΔCOM vuông tại O và ΔCND vuôngtại N có

góc OCM chung

=>ΔCOM đồng dạngvới ΔCND

=>CO/CN=CM/CD

=>CM*CN=CO*CD=2R^2