Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://thi.tuyensinh247.com/de-thi-thu-vao-lop-10-mon-toan-lan-3-phong-gddt-gia-loc-2016-c31a28113.html
a) Tứ giác BEFI có: BFF = 90o (gt)
BEF = BEA = 90o
=> Tứ giác BEFI là nội tiếp đường tròn đường kính BF
b) O I F A B C D E
Vì \(AB\perp CD\)nên AC = AD
=> ACF = AEC
Xét tam giác ACF và tam giác AEC có gốc chung A và ACF = AEC
=> Tam giác ACF song song với tam giác AEC => \(\frac{AC}{AF}=\frac{AB}{AC}\)
=> AE . AF = AC2
c) Theo câu b) ta có: ACF = AEC = > AC là tiếp tuyến của đường tròn ngoại tiếp của tam giác CEF (1)
Mặt khác, ta có: ACB = 90o (góc nội tiếp chứa đường tròn)
\(\Rightarrow AC\perp CB\)(2)
Từ (1) và (2) => CB chứa đường kính của đường tròn ngoại tiếp tam giác CEF, mà CB cố định nên tâm của đường tròn ngoại tiếp tam giác CEF thuộc CB cố định E thay đổi trên cung nhỏ BC.
Giusp mk vứiiiii
Nhân dịp sinh nhật, mẹ mua tặng Mai một chiếc bánh kem. Mai cho em Hoa 1/3 chiếc bánh, cho chị Linh 1/4 chiếc bánh. Hỏi Mai còn lại bao nhiêu phần chiếc của chiếc bánh kem đó
a, Xét tứ giác BHFM có
^BHF + ^BMF = 1800
mà 2 góc này đối
Vậy tứ giác BHFM là tứ giác nt 1 đường tròn
hay điểm B;H;F;M cùng thuộc 1 đường tròn
b, Vì tứ giác BHFM nt 1 đường tròn
=> ^HFM = ^ABE ( góc ngoài đỉnh B )
mà ^ABE = ^AFE ( góc nt chắn cung AE )
Vậy ^AFH = ^MFH
hay FE là tia phân giác ^AFM
a, (O): góc BAC=90 độ (góc nt chắn nửa đường tròn).
(I): góc AEH=90(góc nt chắn nửa đường tròn). góc ADH=90(góc nt chắn nửa đường tròn) => tg AEHD là hcn(có 3 góc vuông)
b) (I): góc ADE=góc AHE( nt cùng chắn cung AE)
ta lại có:góc AHE=góc ABH( cùng phụ với góc BAH.) => ADE=ABH
=> tg BEDC nội tiếp (góc trong tại 1 đỉnh = góc ngoài tại đỉnh đối diện)
c, tg AEHD là hcn; AH cắt AD tại I => IA=IH=IE=ID
tam giác ADH: DI là trung tuyến
tam giác: AMH: MI là trung tuyến => D,M,I thẳng hàng. mà E,M,I thẳng hàng=> D,M,E thẳng hàng.
Nhớ L I K E nha
a) \(BEFI\)nội tiếp vì \(\widehat{BEF}=\widehat{BIF}=90^o\).
b) \(\widehat{ADC}\)là góc nội tiếp chắn cung \(\widebat{AC}\).
\(\widehat{CBE}\)là góc nội tiếp chắn cung \(\widebat{CE}\).
\(\widebat{AC}=\widebat{CE}\)suy ra \(\widehat{ADC}=\widehat{CBE}\).
a: AB vuông góc AC
=>BC là đường kính của (O)
=>B,O,C thẳng hàng
b:S ABC=1/2*AB*AC=1/2*AH*BC<=1/2*AO*BC=1/2*2R*R=R^2