Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).
Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn đường kính OP => Tứ giác OMNP nội tiếp.
2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)
Tam giác ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN
=> ÐOPM = ÐOCM.
Xét hai tam giác OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)
Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).
Từ (1) và (2) => Tứ giác CMPO là hình bình hành.
3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC
=> => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.
.
1) Vì E là giao điểm của OD và AC; AD,DC là tiếp tuyến của (O)
\(\Rightarrow OD\perp AC\)tại E
\(\Rightarrow\widehat{CEO}=90^0\)
Lại có: CH vuông góc với AB \(\Rightarrow\widehat{CHO}=90^0\)
Xét tứ giác OECH có: \(\widehat{CEO}+\widehat{CHO}=180^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác OECH
\(\Rightarrow OECH\)nội tiếp (dhnb )
2) \(2\widehat{BCF}+\widehat{BFC}=sđ\widebat{BC}+\frac{1}{2}\left(sđ\widebat{AC}-sđ\widebat{BC}\right)\)
\(=\frac{1}{2}\left(sđ\widebat{AC}+sđ\widebat{BC}\right)\)
\(=90^0\left(đpcm\right)\)
3) Kẻ tiếp tuyến By của (O). By cắt DC tại P. Gọi K là giao điểm của BC và OP.
Ta có: AC // OP ( cùng vuông góc với BC )
Xét tam giác DOP có : EC // OP
\(\Rightarrow\frac{DE}{DO}=\frac{DC}{DP}\)(1)
Lại có: CH // BP ( cùng vuông góc với AB )
Xét tam giác DBP có: CM // BP
\(\Rightarrow\frac{DM}{DB}=\frac{DC}{DP}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{DE}{DO}=\frac{DM}{DB}\)
Xét tam giác DOB có \(\frac{DE}{DO}=\frac{DM}{DB}\left(cmt\right)\); E thuộc OD , M thuộc DB
\(\Rightarrow EM//OB\)ta let đảo
Hay EM // AB ( đpcm)
Tự vẽ hình:
a) ta có: Nx là tiếp tuyến => \(\widehat{PNO}=90\)
d\(⊥\)AB=> \(\widehat{OMP}=90\)
=> tứ giác OMNP nội tiếp
b) Ta có: CO II MP ( cùng vuông góc với AB)
Tứ giác OMNP nội tiếp => \(\widehat{OPM}=\widehat{ONM}\) (1)
Tam giác cân OCN ( OC=ON=R) có: \(\widehat{OCN}=\widehat{ONM}\) (2)
Từ (1), (2) => \(\widehat{OPM}=\widehat{OCM}\)(**)
Từ (*), (**) => OCMP là hình bình hành
c) Xét \(\Delta OCN\)là tam giác cân
và \(\Delta MCD\)là tam giác cân ( do C,D đối xứng nhau qua AB) có chung góc C
=> \(\Delta OCN\)đồng dạng \(\Delta MCD\)
=>\(\frac{CN}{CD}=\frac{OC}{CM}\Rightarrow CN.CM=OC.CD=2R^2=const\)
Vậy CN.CM không đổi (ĐPCM)
độ dài cung PB=pi*MB*góc PMB/180
độ dài cung CB=pi*OB*góc COB/180
mà MB=1/2OB; góc PMB=2*góc COB
nên độ dài cung BC=độ dài cung BP