K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 11 2021

Gọi d' là ảnh của d qua phép tịnh tiến \(\Rightarrow\) d' cùng phương d

Phương trình d' có dạng: \(3x+2y+c=0\)

Lấy \(A\left(0;2\right)\) là 1 điểm thuộc d

\(T_{\overrightarrow{v}}\left(A\right)=A'\Rightarrow A'\in d'\)

\(\left\{{}\begin{matrix}x'=0+\left(-1\right)=-1\\y'=2+3=5\end{matrix}\right.\) \(\Rightarrow A'\left(-1;5\right)\)

Thế vào pt d':

\(3.\left(-1\right)+2.5+c=0\Rightarrow c=-7\)

Phương trình d': \(3x+2y-7=0\)

16 tháng 11 2021

Cách 2:

Gọi d' là ảnh của d qua phép tịnh tiến  d' cùng phương d

Ta có: \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=x'-a=x'-\left(-1\right)=x'+1\\y=y'-b=y'-3\end{matrix}\right.\)

Thay \(x;y\) vào d ta đc:

\(\Rightarrow\left(d'\right):3\left(x'+1\right)+2\left(y'-3\right)-4=0\)

\(\Rightarrow\left(d'\right):3x'+2y'-7=0\)

Vậy ảnh của (d) là \(\left(d'\right):3x+2y-7=0\)

24 tháng 2 2019

Giải bài 3 trang 7 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 7 sgk Hình học 11 | Để học tốt Toán 11

c) Đường thẳng d có vecto pháp tuyến là n(1;-2) nên 1 vecto chỉ phương của d là(2; 1)

=> Vecto v không cùng phương với vecto chỉ phương của đường thẳng d

=> Qua phép tịnh tiến v biến đường thẳng d thành đường thẳng d’ song song với d.

Nên đường thẳng d’ có dạng : x- 2y + m= 0

Lại có B(-1; 1) d nên B’(-2;3) d’

Thay tọa độ điểm B’ vào phương trình d’ ta được:

-2 -2.3 +m =0 ⇔ m= 8

Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm? a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0 2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C') 3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến the...
Đọc tiếp

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm?

a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0

2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C')

3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến the \(\overrightarrow{v}=\left(2;3\right)\) biến điểm M thành điểm nào trg các điểm sau?

a. (1;3) b. (2;0) c. (0;2) d. (4;4)

4. Trg mp Oxy cho đt d có pt: x + y - 2 = 0. Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(3;2\right)\) biến đt d thành đt nà trg các đt sau?

a. 3x + 3y - 2 = 0 b. x - y + 2 = 0 c. x + y + 2 = 0 d. x + y - 3 = 0

5. Trg mp Oxy cho đt (C) có pt: \(\left(x-1\right)^2+\left(y+2\right)^2=4\). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối cứng qua tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(2;3\right)\) biến (C) thành đt nào trg các đt có pt sau?

a. \(x^2+y^2=4\) b. \(\left(x-2\right)^2+\left(y-6\right)^2=4\) c. \(\left(x-2\right)^2+\left(x-3\right)^2=4\) d. Đáp án khác

0
NV
2 tháng 8 2021

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc \(\Delta\Rightarrow x+2y-1=0\) (1)

Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in\Delta'\)

\(\left\{{}\begin{matrix}x'=x+1\\y'=y-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-1\\y=y'+1\end{matrix}\right.\)

Thế vào (1):

\(x'-1+2\left(y'+1\right)-1=0\)

\(\Leftrightarrow x'+2y'=0\)

Hay phương trình \(\Delta'\) có dạng: \(x+2y=0\)

2 tháng 8 2021

Em cảm ưn ạ